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Abstract— The study of traffic behavior at intersections is
an important research direction in the field of intelligent
transportation system (ITS). It is considered very practical to
reduce accident, solve traffic jam and improve its accessibility.
This paper proposed a trajectory analysis method for vehicles
passing an intersection. The motion trajectories of vehicles were
obtained by a traffic data collecting system using a network of
single-row laser scanners. The intersection could be described
by a group of route models which are built based on trajectory
clustering, so large amount of trajectories could be classified
to different routes and abnormal ones could also be detected.
Experimental results based on real trajectories obtained from
an intersection in Beijing show the validity of our proposed
method.

I. INTRODUCTION

Analyzing or monitoring traffic behavior at an intersection,
such as collecting the traffic speed data, motion trajectory
and counts for different kinds of traffic objects (i.e., car,
bicycle and pedestrian), is very important in order to reduce
accidents, solve traffic jams, and improve accessibility. There
have been many researches on moving object detection
and tracking of traffic scenes. Most of them study visual-
based methods to acquire the motion trajectories of cars and
pedestrians[1][2][3][4]. Latest research developments appear
using laser scanners or fusion of multi-modal sensors for the
purpose[18][19][20][21]. It has been demonstrated that large
amount of motion trajectories can be obtained automatically,
fostering researches on trajectory analysis to study traffic
behaviors of the scene, such as collecting traffic statistics,
predicting for future status, extracting scene semantics, de-
tecting normal/abnormal motion patterns, etc.

Trajectory analysis seeks to provide a higher-level situ-
ational awareness by understanding and characterizing the
behavior of every object in the scene owe to the rich
information contained in objects motion. Junejo et al. [16]
proposed a method for detecting nonconforming trajectories
of objects which used Hausdorff distance as the pair-wise
similarities between trajectories. Suzuki et al. [5], proposed
a method to learn motion patterns and detect anomalies by
human trajectory analysis which applied HMM to modeling
of trajectories. Stefan Atev et al. [9], used spectral clustering
to learn traffic patterns at intersections from trajectories of
vehicles obtained by a vision tracking system. Wang et al.
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[6], used nonparametric Bayesian model, Dual-HDP, for tra-
jectory analysis and semantic region modeling in surveillance
settings, in an unsupervised way. Zhang et al. [10], proposed
a framework to learn semantic scene models by trajectory
clustering which could be applied at intersections. Johnson
et al. [17] presented a vector quantization based approach
for learning typical trajectories of pedestrians in the scene,
but they require entry/exit points to be marked manually.
D. Makris and T. Ellis proposed a scene model that labels
regions according to an identifiable activity in each region,
such as entry/exit zones, junctions, paths and stop zones by
trajectory learning in [14]. Hu et al. [7], presented a system
for learning object motion patterns which are then used to
detect anomalies and predict behaviors. B.T. Morris et al.
[15] proposed a general framework for live video analysis
which build a topographical scene description where nodes
are points of interest (POI) learned as a mixture of Gaussians
and the edges correspond to activity paths (AP) by clustering
trajectories. They also summarized the techniques used in
trajectory-based activity analysis for visual surveillance in
[8] .

This research is based on a previous development[11] of
a system for monitoring an intersection using a network
of single-row laser scanners, which are set on road side to
profile an intersection horizontally from different viewpoints.
Different laser scanners data are integrated into a common
spatial-temporal coordinate system and processed. Thus,
the moving objects entered intersection are detected and
tracked, for more, their trajectories are also extracted, which
contains location, size, speed, direction, etc. dynamic/static
parameters at each time instance. Compared to vision-based
systems, laser-based system has long range and smaller data
size which could collect trajectories in a long term and a
large area. Based on such featured trajectories obtained by
laser-tracking system, this research studies vehicle behavior
at an intersection. Considering that normal vehicle motions
at an intersection commonness, which can be modeled by ex-
tracting their spatial-temporal statistical characteristics, while
abnormal behaviors do not obey any explicit rule, a method
of route model generation on normal behaviors as well as a
motion pattern classification to discriminate normal and ab-
normal behaviors is developed. Three subsequent procedures
exist in our framework. They are trajectory clustering, route
modeling and motion patterns classification. Given a set of
trajectories, the trajectory clustering step is to cluster them
into a number of groups on a certain distance measure, so
that statistics of commonness are then extracted from each
group of trajectories to generate an abstract representation,



i.e. route model.
This paper is organized as follows. In section 2, we

described our method for trajectory analysis. Experiment and
results are discussed in section 3, followed by conclusions
and future topics in section 4.

II. METHODS

A motion trajectory is represented as a sequence of dy-
namic measurements

Tk = {f1k , f2k , ..., f
Lk

k } (1)

where

f tk = [xtk, y
t
k, v

t
x,k, v

t
y,k]T (2)

is a measurement of the moving object k at time t, (xtk, y
t
k)

and (vtx,k, v
t
y,k) are its location and velocity. Given a set

of trajectories {Tk}, this research is to learn a set of route
models {Γj} that representing the major motion patterns
of the dynamic scene, and to generate a classifier that
recognizing normal and abnormal behaviors.

A preprocessing step is needed for two purposes. Firstly,
remove fragments from original tracks by setting appropriate
thresholds on time-space domain. Secondly, smooth trajec-
tories which have short-lived skewing due to the occlusion
between multiple targets.

A. Trajectory Clustering

Given a set of trajectories {Tk}, the trajectory clustering
step is to cluster them into a number of groups on a certain
distance measure. Trajectories in each group have a same
motion pattern owing to their spatial statistical characteris-
tics.

It is common that the lengths of trajectories are different
because of their time-varying feature, so steps must be
taken to ensure a appropriate comparison between differing
sized inputs. Considering the area of the intersection, all
trajectories are resampled at larger time intervals(once ∆t
frames) and each trajectory is linearly interpolated with
points to ensure that all trajectories have the same number
L of points. Then we take a distance measure (similar with
[12]) that does not depend on having the entire trajectory for
computation. Assuming trajectories Ta and Tb, have equal
number L of points,

d(Ta, Tb) =
1

L

L∑
i=1

dE(f ia, Tb) (3)

where

dE(f ia, Tb) = min
j

(dE(f ia, f
j
b ))

j ∈ {b(1− δ)ic ... d(1 + δ)ie} (4)

dE(f ia, f
j
b ) is the Euclidean distance to compare two equal

length frame vectors and f jb is the best match frame to f ia
in a sliding temporal windows of length 2δ centered on i, as
shown in Fig.1. This defines a distance measure that is the
mean of normalized distances from every point to its best
match point.

Fig. 1. an illustration of distance between two matched frames

Once trajectories have been properly preprocessed, they
can be clustered into several groups by iteration steps as
follows:

1) choose the longest trajectory from unlabeled trajecto-
ries, as a new initial cluster center Cj . If all of them
are labeled, end the clustering;

2) calculate the distance between Cj and every unlabeled
trajectory Ti. If the distance is smaller than threshold,
label Ti with j;

3) calculate the average of all trajectories labeled with j
to update cluster center Cj ;

4) return to (2) to recalculate, if no new trajectory added,
return to (1).

B. Route Modeling

After the spatial-based clustering, all trajectories are clus-
tered into N groups:

cls = {{T1,1, ..., T1,M1}, ...,
{Tj,1, ..., Tj,Mj}, ..., {TN,1, ..., TN,MN

}}, (5)

where Mj denotes the number of trajectories in the jth
cluster. The route modeling step is to learn a set of route
models {Γj} as an abstract representation of the statistics of
commonness extracted from each group of trajectories.

Not relying on lane structure or geometry, the model we
propose is depicted in Fig.2(a). Given a route model Γj , it
consists of a sequence of equidistant nodes {φij}, where each
node φij is characterized by:

• centroid: a 2-D position point µij = [xij , y
i
j ], which is

part of the main axis;
• normal vector: ~νij = [nxij , ny

i
j ] defined as the unit

vector perpendicular to the local route direction, as
defined by the sequence of the nodes;

• envelope range: σij defined as the width of route around
the node position.

Therefore, the route model Γj can be represented by a
group of nodes

{φij = (µij , ~ν
i
j , σ

i
j)|i = 1, 2, ..., nj}, (6)

where nj is the number of nodes in Γj . It’s easy to see
that the spatial distribution density of trajectories in a route
looks like a ridge shape in most cases, so there could be
further assumption that trajectories position obey Gaussian
distribution around every cross-section of the route, as shown



(a) The route model description

(b) The Gaussian distribution assumption

Fig. 2. Definition of the route model

in Fig.2 (b). Given a cluster center Cj and corresponding
group of trajectories

clsj = {Tj,1, ..., Tj,Mj
}, (7)

we propose the route modeling algorithm summarized as
follows:

1) centroids {µij |i = 1, 2, ..., nj}
Resample the cluster center Cj at spatial distance rj
to get nj nodes, as shown in Fig.3(a). Then compute
the average of all trajectories points in a neighbourhood
zone of each node to get nj new points as the centroids
{µij |i = 1, 2, ..., nj}, as shown in Fig.3(b).

2) normal vectors {~νij |i = 1, 2, ..., nj}
Compute the tangent line of each centroid µij by curve
fitting the entire sequence, and then get the normal
vector ~νij , as shown in Fig.3(c).

3) envelope ranges {σij |i = 1, 2, ..., nj}
To every trajectory point P in the neighbourhood zone
of µij , compute the projection distance d between P
and µij on axis ~νij . According to our assumption, the
projections obey Gaussian

d =
∥∥(P − µij) · ~νij

∥∥ ∼ N(0, σij), (8)

so the envelope range σij could be represented by the
variance, as shown in Fig.3(d).

C. Behavior Classification and Abnormal Detection

Once a route model Γj has been constructed, it is repre-
sented by a group of nodes

{φij = (µij , ~ν
i
j , σ

i
j)|i = 1, 2, ..., nj}.

Fig. 3. The procedure of route modeling

The classification step is to discriminate normal and abnor-
mal behaviors as well as new trajectories can be placed
into the appropriate route with probabilistically Bayesian
inferencing.

In this research, we use joint probability distribution

P (Tk,Γj) = P (Tk|Γj)P (Γj) (9)

to describe the likelihood that a trajectory Tk belongs to
the route Γj . The prior route distribution P (Γj) can be
estimated from the cluster density or frequency in the training
trajectories set. Assuming the length of Tk is Lk, we define

P (Tk|Γj) =

Lk∏
p=1

P (fpk |Γj) =

Lk∏
p=1

P (fpk |φ
i′

j ) (10)

where fpk represents the P th frame of Tk, and φi
′

j =

(µi
′

j , ~ν
i′

j , σ
i′

j ) is a new node estimated using linear interpola-
tion of two nearest nodes to fpk . As shown in Fig.4, we can
still assume that the projection distance d from µi

′

j to fpk also
obey Gaussian distribution. Therefore, Gaussian probability
density is used to describe P (fpk |φi

′

j ) as

P (fpk |φ
i′
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1√

2πσi
′
j

e
−d2

/
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2

(11)

Through the modeling procedure, we have got n nor-
mal routes {Γ1,Γ2, ...,Γn}, representing n kinds of typical
motion patterns of vehicles at intersection. Besides, there
is another motion pattern contains a few kinds of special
behaviors like disobeying traffic rules, called abnormal route
Γa. The route type of a novel trajectory is described by
finding the maximum a posteriori route

Γ∗ = arg max
i

P (Γi|T∗)

= arg max
i

P (T∗|Γi)P (Γi) (12)



Fig. 4. An illustration of distance between a route centroid and a trajectory
frame

This determines which route best matches the new datum.
For those normal routes, the likelihood P (T∗|Γi) of route
Γi could be calculated according our previous definition.
For route Γa, P (Γa) could be set a value manually, for
example, we assume that the ratio of abnormal behaviors
is less than 5%. But P (T∗|Γa) could not be computed by
route model parameters directly. Since normal routes denote
typical motions, if a new trajectory does not belong to
any normal routes, it can be considered an abnormality.
According to this, we define the likelihood of route Γa as

P (T∗|Γa) =

n∏
i=1

f(P (T∗|Γi)) (13)

{if x < ε, f(x) = 1 else f(x) = 0}

The threshold ε ∈ [0, 1] controls the abnormality rate.
Larger ε will cause more trajectories to be considered
anomalous.

III. EXPERIMENTAL RESULTS

To test the validity of the proposed approach, an exper-
iment was conducted to collect moving objects trajectories
at an intersection near Peking University, as shown in Fig.5.
We choose vehicle trajectories in twenty minutes for training
and then 1295 complete trajectories are picked out by pre-
processing to remove outliers. The clustering result base on
trajectory position and moving direction is shown in Fig.6.
According to their motion patterns, these trajectories are
divided into 9 groups, including 4 straight, 2 left turn, 2
right turn and 1 U-turn.

As mentioned in Section 2.2, each trajectory cluster rep-
resents a typical route through which vehicles pass the
intersection. The route model is shown in Fig.7, different
color represents different route. The color’s change (deeper
to lighter) of each route denotes the moving direction of
vehicle in the route which looks like a ridge and its cross-
section obey Gaussian distribution.

Based on the route model, novel trajectories could be
classified to different routes. We set the prior abnormal route
distribution P (Γa) to 0.05 and normal likelihood threshold
ε to 0.003. Fig.8 shows 4 different trajectories classification
results, in Example 1, the trajectory to be classified (white
color) is a normal one which has a probability of 0.9948 to

Fig. 5. A screen copy of the tracking result

belong to a deeper blue route, the red route is 0.0052, and the
other normal routes and abnormal behavior are both 0 (the
color of number is corresponding to the route’s color, white
number means the probability of abnormal behavior). In the
other 3 examples, the white trajectories are all detected as
abnormal behaviors because they don’t belong to any normal
routes. To prove the detection results is correct or not, we
could check the entire tracking procedure of a vehicle passing
the intersection through playback of the raw laser data.

As shown in Fig.9, during the playback of Example 2, a
vehicle appeared in the entrance of a left-turn route (deeper
blue) in frame 11241. Only a part of body was detected due
to the occlusion so it seemed to be a small car waiting to turn
left. But indeed the vehicle kept moving straightly as well
as we know it was a bus in frame 11392 and then it passed
the intersection. Therefore, this trajectory is real abnormal
behavior because of driving in wrong lane. Similarly, as
shown in Fig.10, in Example 3, a car was running in the
bicycle lane when it entered the intersection (frame 12765),
then it tended to turn left to enter the motor way in frame
13215 and succeeded in frame 13965. This is also real
abnormal behavior as the same reason. However, in Example
4, shown in Fig.11, the moving object was an electric bicycle
actually and entered the intersection from a bicycle lane, but
there was another electric bicycle which runs parallel with
the first one. Then they were merged to be one target in frame
3704 which was classified to be a vehicle when the trajectory
was output by the system. This is an error occurred during
the tracking procedure, so it is false abnormal detection in
our results.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this research, we propose a trajectory analysis method
for vehicles passing an intersection. The motion trajectories
of vehicles are obtained by a traffic data collecting system



Fig. 7. Vehicle route model at the intersection

Fig. 6. The clustering result of vehicle trajectories

using a network of single-row laser scanners to detect and
track moving objects at intersection. The typical motion
patterns of vehicles are generated by trajectory clustering
using a modified Euclidian distance as the pair-wise simi-
larities between trajectories. Then route models based on a
sequence of Gaussians are built by these motions patterns.
Probabilistically Bayesian inferencing is used for behavior
classification and abnormal detection. Those vehicles passing
the intersection in a normal way could be classified into
different routes, and a few special ones could also be detected
as abnormal behaviors. In our experimental results, we have
shown examples of real abnormal behavior (driving in wrong
lane) detected by our system. We also analyzed a false
detection result caused by tracking mistake.

(a) Ex.1: Normal Trajectory (b) Ex.2: Abnormal Trajectory

(c) Ex.3: Abnormal Trajectory (d) Ex.4: Abnormal Trajectory

Fig. 8. Examples of behavior classification and abnormal detection

B. Future Works

Under the current research, only the spatial information
of trajectories is used for analysis. Actually, the intersection
is a highly time-share traffic scene for multiple kinds of
moving objects. Therefore, we plan to use the temporal
information of trajectories to further extend our framework
which would be able to distinguish not only between objects
traversing spatially dissimilar but also objects traversing
spatially proximal paths but having different spatio-temporal
characteristics.
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