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Abstract— It became a well known technology that a map of
complex environment containing low-level geometric primitives
(such as laser points) can be generated using a robot with laser
scanners. This research is motivated by the need of obtaining
semantic knowledge of a large urban outdoor environment
after the robot explores and generates a low-level sensing
data set. An algorithm is developed with the data represented
in a range image, while each pixel can be converted into a
3D coordinate. Using an existing segmentation method that
models only geometric homogeneities, the data of a single
object of complex geometry, such as people, cars, trees etc., is
partitioned into different segments. Such a segmentation result
will greatly restrict the capability of object recognition. This
research proposes a framework of simultaneous segmentation
and classification of range image, where the classification of
each segment is conducted based on its geometric properties,
and homogeneity of each segment is evaluated conditioned on
each object class. Experiments are presented using the data of
a large dynamic urban outdoor environment, and performance
of the algorithm is evaluated.

I. INTRODUCTION

As the rapid development of sensing and mapping tech-

nologies, especially the significant advances in SLAM (Si-

multaneous Localization And Mapping) using laser scanners

(i.e. LiDAR sensors), it became a well known technology

that a geometric representation (i.e. map) of an environment

can be generated by a robot with multi-modal sensors.

Researchers demonstrated successful results even in complex

environments, such as urban scenes [6,7,17,24]. However

many of the results represent environments directly using the

integration of laser points, or low-level geometric primitives

such as feature points, planar surfaces and so on. Such a

map has limited capacity in representation, as it tells only

spatial existence. An operator can easily understand from

the data where objects are, and what kinds of objects they

are, however a robot can not. In order for a robot to have

semantic knowledge of the environment, such as objects,

types and their spatial relationships, an automatic technique

of converting those low-level map representation into high-

level one is important.

A robot vehicle system (POSS-v) was developed in our

previous research (see Fig.1) [28], where five single-row

laser scanners (briefly called ”laser scanner”) are mounted

on a car, for the profiling of the surroundings from differ-

ent viewpoints and at different directions; a GPS (Global
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Fig. 1. An intelligent vehicle (POSS-v) with multiple single-row laser
scanners.

Positioning System)/IMU (Inertial Measurement Unit)-based

navigation unit was also used. A localization module was

developed by fusing the GPS/IMU navigation unit with

a horizontally scanning laser scanner ”L1”. The problem

is formulated as a SLAM (Simultaneous Localization And

Mapping) with MODT (Moving Object Detection and Track-

ing)[27], so that it finds the vehicle pose of both global

and local accuracy. It also conducts a 2D mapping and

moving object detection/tracking at the same time. With the

vehicle pose and sensor geometric parameters, the range

data from laser scanners (L2-L5) (see Fig.2) can be geo-

referenced into a global coordinate system to provide a three-

dimensional representation of the environment (see Fig.3).

Such a mapping technology is quite efficient in generating

a detailed copy of a dynamic environment at the moment.

However, no semantic knowledge is associated to the data

at such a low-level representation. This paper focuses on a

scene understanding technique, where, given such a low-level

representation of the environment, we generate semantic

knowledge by segmenting the data into individual objects,

meanwhile labeling objects into different classes. Segmen-

tation and classification are formulated in a simultaneous

framework. Currently, we consider an off-line procedure after

a robot explored and collected low-level data of an unknown

environment. In the followings, a literature review is given

in section 2, a framework of simultaneous segmentation and

classification is addressed in section 3, experimental results

are discussed in section 4, followed by conclusions and future

studies in section 5.

II. LITERATURE REVIEW

Laser scan data represents environmental geometry di-

rectly, using the sequence of 2D or 3D laser points. Through

a bottom-up procedure, they can be first processed to find
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Fig. 2. Range images by laser scanners L4-L5 as well as an enlarged figure
reflecting a very dynamic environment. The horizontal axis is the scan line
number (∝ time), and the vertical strip represents the range values of each
laser scan

Fig. 3. Geo-referenced laser points, providing a low-level geometric
representation of the environment. Colors denote for the data of different
laser scanners (L2-Green,L4-Blue,L5-Red). In order for visualization, the
laser points on the road are extracted according to their local surface normal
and elevation value, and are colored in gray.

data clusters, i.e., laser points in which are most likely to

be the measurements of the same objects. They can be then

recognized as certain kind of objects, e.g., planar surfaces

[9], line feature objects [1], cars [16], natural objects [21]

etc. In order to tackle the large number of laser points, [5,18]

tessellated the 3D space, and projected laser points to voxels.

The sequence of laser points can also be used as a whole,

to represent the geometric appearance of local surroundings,

a higher level knowledge of the robot’s concurrent location,

such as a doorway, corridor, room etc. can then be inferred

through machine learning techniques[15]. In addition, each

individual laser measurement is considered to be dependent

on its neighborhood in [23]. Their relationships are modeled

using Markov Networks, where labeling of each laser point

is influenced by the labeling of others in its local vicinity. [4]

also associated image cues with each laser point and varied

the probabilistic framework using Conditional Random Field.

[20] further extended the method of [23], so that each

node in Markov Network corresponds to a data patch, i.e.

a superpixel (image patch) with corresponding laser points

in successive scans, rather than a laser point. In addition, a

recent report can be found in [8], where an air-borne laser

scan data is processed to label the small objects, such as

post, light, car, etc., in urban environment. The problem

is solved by localization, segmentation, representation and

classification procedures in a sequential way.

On the other hand, laser scan data can be represented

in the form of a range image, where each pixel represents

a depth value, and its index corresponds to the sequential

order of measurements. Thus, beam origin and angle of each

depth value can be retrieved, depth value can then be easily

extended to a 3D coordinate. There is a large body of work

addressing range image segmentation. A very famous report

comparing the major segmentation methods can be found in

[11]. Many of the methods are motivated by the needs for

recognizing industry parts [13] or registering the data taken at

different locations [26]. These works always assume simple

or well-defined object geometry. There are still few research

works processing range images of real world scenes. [10]

considers a real-world indoor and outdoor scene by modeling

the man-made objects using planes and conics, modeling

free-form objects using splines, and modeling trees using 3D

histogram; segmentation and model fitting for each segment

is formulated in a data-driven Markov Chain Monte Carlo

procedure.

In addition, image segmentation and semantic interpreta-

tion have been studied extensively in the field of computer

vision. As the data form of a range image is consistent with

that of a visual image, many methods developed in the field

of computer vision are of great reference for the processing

of range image [2,14,19,25].

In this research, we choose the form of range image as

an interface for data representation, while, estimations are

conducted in both 2D (i.e. the coordinates in the frame

of range image, representing a spatial continuity relative to

scanning order and view points) and 3D (i.e. the coordinates

in a world coordinate system, representing an absolute spatial

geometry). As this research is motivated by the need of

generating a semantic map of a large urban outdoor environ-

ment, we need to consider a scene that contains many kinds

of objects, such as buildings, roads, trees, bushes, people,

cars, etc., which have different scales in 3D space, with

different geometric characteristics (see Fig.4). We refer to the

researches in [2,14,19,25] that generate unified frameworks

for the segmentation and recognition problems in facing

a complex scene. In addition, the robot may explore a

large environment, yielding a large among of range data;

thus, efficient data processing is of great importance. Our

method first computes super-segments using the bottom-up

heuristics, such as scan-line segments and edge points at

different scales, then merges the super-segments, considering

both modeling costs and classification probabilities.

III. A FRAMEWORK OF SIMULTANEOUS SEGMENTATION

AND CLASSIFICATION

A. Geometrical homogeneity vs. Contextual homogeneity

Segmentation is making a partition in data, where in each

partition cell (i.e., segment), data has the property of certain

homogeneity. Recognition is associating semantic knowledge

with each segment, where the problem gets difficult if a

segment provides only partial knowledge of the object. Such

problems might occur in complex scenes when using the
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Fig. 4. A hierarchical structure of urban outdoor scene.

geometric primitive such as a planar/ conic/ quadric surface

or a spline, to estimate the homogeneity of each segment. For

example, a car might contain a number of surfaces; a plane-

based segmentation might divide the data of a single car into

a number of surfaces. The same problem occurs with people

and other complex-shaped objects, which makes recognition

an extremely difficult problem.

In this research, we specify homogeneity that data in each

segment should belong to the same object(i.e., contextual

homogeneity). However, it is difficult to define a unified

contextual homogeneity for all kinds of objects, as they

have different geometric properties. We consider a normal

urban scene containing objects such as roads, buildings,

trees, cars, people etc.. The objects can be broadly divided

into two groups, i.e., ground surface and vertical objects.

Some discriminative characteristics are also summarized in

Fig.4. We consider that large scale objects, such as building

surfaces, roads and bushes can be represented using one or a

group of large planar surfaces with different surface normal,

variance and elevation cues. The segment of a car or a person

might be composed of a number of small surfaces, while

basically, their data in 3D space can be restricted within a

limited cubic or cylindric volume, respectively. It is difficult

to find a geometric model to describe tree data, however

normally, there will be many small segments or edge points

in their neighborhood that are defined in 2D range image.

B. Implementation details

As a single-row laser scanner measures the environment in

a mode of scan-line by scan-line. A scan-line measurement

on a planar object, such as the surface of a building, road

etc., can be modeled using a straight line segment. The

measurement on a free form object, such as a tree, will

form many small line segments or irregular points. It is a

straightforward consideration to use scan line segments as

the segmentation primitives, instead of laser points, so as to

improve computation efficiency [12]. Here, we refer to [22]

and their source codes to extract straight line segments from

each scan line.

We explore a framework that first split the range image

into super segments, then merge the segments belonging to

the same objects. In split procedure, a region growing is first

conducted to merge the scan line segments according to their

planarity; a region growing is then conducted to merge the

irregular points and isolated scan line segments according to

their spatial connectivity. There is a requirement to the result:

each super segment could be a part of an object, but it should

not be a mixture of different objects, so that strict criteria

are used in the above region growings. In merge procedure,

a key problem is to define a model that evaluates contextual

homogeneity of the data segments of multi-class objects. In

this research, the super segments of the same object are

merged into one unit, meanwhile classified into different

classes. They are formulated in a simultaneous framework

as discussed below.

C. Probabilistic model

Let L denotes the set of object classes, i.e., L =
{l|building, road, tree, person, car, ...}, and y = l ∈ L
denotes the label of a segment. If we know the object type

y, we can previously train a model. With the model and data

cue I , we can estimate the likelihood of a segment s by

P (s|y, I). If we already know a segment s, we can estimate

the probability of object type P (y|s, I) using a previously

trained classifier. However, if we do not have any a prior

knowledge of the object type and data partition, we need to

guess these simultaneously, i.e., P (s, y|I). In this research,

we generate a unified framework to model the simultaneous

segmentation and classification problems.

Let si and sj be a pair of neighboring segments with the

label of yi and yj , respectively. Let si+j denote the union of

segments si and sj , and yi+j for its label. The probability

for si merge with sj , i.e. P (si+j |I), can be estimated as

follows.

P (si+j |I) =∑
l∈L

P (yi = l|I)P (yj = l|I)P (si+j |yi+j = l, I) (1)

here, P (si+j |yi+j = l, I) estimates the likelihood, where

given the knowledge of object type yi+j = l and data cues

I , the probability that si and sj be the measurements to a

single object, i.e. si and sj be merged to si+j . P (yi = l|I)
and P (yj = l|I) evaluate the probabilities of si and sj be

labeled to l, respectively, given the data cues I . As a segment

can be represented as a composite of scan lines (omitting the

irregular points that do not belong to any line segments) or a

cloud of laser points, we define the estimation of P (yi = l|I)
as follows.

P (yi = l|I) =
1
Z

P (Yi = l|I)
∏
k

P (y(k)
i = l|I) (2)

where, y
(k)
i is the label of the kth line segment, Yi is the

label of the laser point cloud. P (y(k)
i = l|I) evaluates the
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probability of each line segment (yki = y
(k)
i ) be labeled

to l, based on the cues extracted from each individual line

segment, such as length, height, direction of the line segment,

and scattering property of laser points on line segment.

P (Yi = l|I) evaluates the probability of laser point cloud Yi

be labeled to l, based on the properties of the entire cloud,

such as spatial layouts, size, shape etc.. Z is a normalization

factor that is calculated as follows.

Z =
∑
l∈L

P (Yi = l|I) ·
∏
k

P (y(k)
i = l|I) (3)

So that in calculating the probability for merging segment

si and sj , we need to find analytic solutions for the following

estimations.

• P (yk|I) : the probability of classifying a scan line

segment yk, given data cues I .

• P (Y |I) : the probability of classifying a scan line

segment union Y , given data cues I .

• P (s|y, I) : the likelihood that given object label y and

data cues I , range segment s be a measurement to a

single object.

We train the first two classifiers using machine learning

techniques, and define the third one based on the a prior

knowledge of a certain kind of object. We detail the methods

below.

IV. TRAINING AND DEFINITION TO CLASSIFIERS

A. Training samples

An interactive tool is developed to generate training data

samples. A range image is first processed to find local

surface normal for each laser point, edge point that has

discontinuous change in range value, scan line segments,

super segments, etc.. These results are compared by an

operator to discriminate the boundaries of individual objects.

For each object, the operator will manually draw boundary

and assign a label. The software will output the scan line

segments that are inside the boundary, as well as the label,

for training classifier P (yk|I). The software will also output

all laser points within the boundary, as well as the label, for

training classifier P (Y |I). The manually labeled data are

used as true values for evaluation too.

B. Classification of a scan line segment

Given a scan line segment with a set of data cues I =
d1, d2, ..., we want to estimate the probability of the line

segment be labeled to yk = l, i.v., P (yk = l|d1, d2, ...). It

can be further extended according to Bays’ rule.

P (yk = l|d1, d2, ...) = P (yk = l)
∏

i

P (di|yk = l) (4)

where, P (yk = l) is a prior knowledge of a scan line

segment be labeled to yk = l. It is initialized as a equal

distribution, and updated after each iteration according to the

percentages of data labeling. P (di|yk = l) is the likelihood

measure (denoted by λyk
l (di)), when given a label yk = l,

TABLE I

DATA CUES OF A SCAN LINE SEGMENT

Feature Definition

d1 length of the scan line segment
d2 maximal height value
d3 minimal height value
d4 Z factor of the directional vector
d5 mean of line regression
d6 variance of line regression

Fig. 5. The likelihood measures for the classification of line segments.

the probability di of the scan line segment be observed. The

data cues extracted from each scan line segment are listed

in Table 1.

For any pair of data cue di and object label yk, a

likelihood measure λyk
l (di) is trained using a set of manually

labeled scan line segments. A histogram is first generated

on data samples, then Gaussian fittings are conducted on

each distinctive picks, followed by a normalization so that

integration of the graph be 1. The likelihood measures trained

in this research are shown in Fig.5.

C. Classification of a cloud of laser points

Data cues extracted from a cloud of laser points are

listed in Table 2. They are different with those in scan line

classification, as the classification of a laser point cloud does

not evaluate the properties of each individual laser point,

but treats them as a whole. The likelihood measures λY
l (di)

of a certain pair of data cue and object label are generated

and demonstrated in Fig.6. However, through experimental

study, we found that the results of classifying a cloud of laser

points using the method described in the previous section is

less good than that of a scan line segment. One reason for

this might be the limited and unbalanced number of sample

data (see Table 3). In classifying a cloud of laser points, we

finally use an off-the-shelf method, LIBSVM [3].
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Fig. 6. Likelihood measures for classifying a cloud of laser points.

TABLE II

DATA CUES EXTRACTED FROM A CLOUD OF LASER POINTS

Feature Definition

d1 minimal height value
d2 maximal height value
d3 ratio of boundary point number vs total point number
d4 mean of height values
d5 variance of a histogram distribution on normal vectors
d6 major picks of a histogram distribution on normal vectors
d7 ratio of width vs. length

D. Likelihood evaluation of a range segment with known
object class

Estimation of P (s|y, I), i.v., given object label y and data

cues I , the probability that a range segment s be a mea-

surement to a single object, is different with the previously

discussed classifiers. Here, we know what kind of object it

is, so that an evaluation based on a prior knowledge to the

object model is required. We give the following definitions

based on experiences.

• y = building or road :

Normally only a partial surface of building or road are

measured, which could be modeled using a planar surface,

with a certain volume (e.g. ε = ±20cm) representing the

errors in laser range measurements and modeling general-

ization. Let S denotes the total number of laser points in the

range segment, N for the number of laser points within the

volume, and α be the angle between the surface normal and

a vertical normal vector (0, 0, 1)T . We define

P (s|y = building, I) ∝ N ∗ sinα

S
(5)

TABLE III

THE NUMBER OF SAMPLE DATA IN TRAINING CLASSIFIERS

Class Scan line segments Clouds of laser points

Building 9394 96
Road 10714 23
Tree 4122 148
Car 6080 41

People 394 120
Bush 1176 39
Bus 253 1
Total 32133 468

Fig. 7. A step function for likelihood evaluation

P (s|y = road, I) ∝ N ∗ cosα

S
(6)

• y = car :

Normally data of a car can be restricted within a cube, so

that we define τW , τL and τH according to the largest width,

length and height of a normal car. We use a cubic model to

fit on the laser points of the segment and obtain a width

(Wf ), a length (Lf ), and a height (Hf ). A step function is

defined (see Fig.7)

y = f(x, α1, α2), and (7)

∫ α2+ε

max(α1−ε,0)

ydx = 1 (8)

We define

P (s|y = car, I) ∝ (9)

f(Wf , 0, τW ) ∗ f(Lf , 0, τL) ∗ f(Hf , 0, τH)

• y = bus : similar with the evaluation of a car.

• y = person :

Normally data of a person can be restricted within a

cylinder, so that we define a radius (τr) and a height threshold

(τh) according to the size of a normal person. We use a

cylindrical model to fit on the laser points of the segment

and obtain a radius (rf ) and a height (hf ).We define

P (s|y = person, I) ∝ τr

max(τr, rf )
∗ τh

max(τh, hf )
(10)

• y = tree :

Normally the range segment of a tree consists of many

small line segments and edge points. Let S denote the total
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Fig. 8. A 3D view of integrated laser points measured by the laser scanners
L4 and L5.

number of laser points of the range segment, E for the

number of laser points on scan line segments. We define

P (s|y = tree, I) ∝ E

S
(11)

• y = bush :

We also use a cubic model to fit on the bush data. The

method is similar to that used for a car or bus.

V. EXPERIMENTAL RESULTS

We present results of an experiment that were taken placed

in the campus of Peking Univ. The vehicle run a course about

1km around a campus building. Streams of range images

can be found in Fig.2, Fig.9 and Fig.10, a 3D view of the

integrated laser points measured by the laser scanners L4

and L5 (refer to sensor layout in Fig.1) is demonstrated in

Fig.8. Colors denote for different sensor data. However, no

semantic knowledge is associated to the data at such a low-

level map representation. We manually labeled the data on

range images as shown in Fig.9 and Fig.10 using the method

of extracting training samples. The labeled data of laser

scanner L4 are used in training classifiers, while those of

L5 are used in examining the automated processing results.

Using the method developed in this research, range image

is partitioned into segments, meanwhile, labels representing

object types are associated to each individual segment. Two

sets of results are presented in Fig.9 and Fig.10. In order

for comparison, each contains a view of range image, the

super segments after split procedure, a segmentation and a

classification result after merge procedure, and a manually

labeled result as the ground truth. On the other hand, a view

of laser points colored on object types is demonstrated in

Fig.11, compared with a view of manually labeled result in

Fig.12. Definition to color legend is consistent with those

in Fig.9 and Fig.10, where blue for building, gray for road,

green for tree, red for car, dark green for bush, yellow for bus,

water blue. In addition, the black point in manually labeled

result means that the data is not labeled, which happens in

confusing zone that difficult for an operator to interpret; the

white point in classification result means that the data is

Fig. 9. A comparison of segmentation and classification results.

Fig. 10. A comparison of segmentation and classification results.

not classified, which happens for irregular or edge point.

From the results, it can be found that the algorithm has good

performance for buildings, trees and cars. However, some of

the pedestrians are mis-classified into bushes, still some part

of tree are mis-classified into buildings. The algorithms are

to be improved through future works.

VI. CONCLUSION AND FUTURE STUDIES

This research is motivated by the need for obtaining

semantic knowledge of a large urban outdoor environment

after a robot explores and generates a map consisting of a

low-level sensing dataset. An algorithm is developed in the

representation of range image, while data are processed in
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both 2D and 3D coordinates. A framework of simultaneous

segmentation and classification is developed in this research,

where classification of each segment is conducted based

on its geometric properties, while homogeneity in each

segment is evaluated conditioned on object class. We pre-

sented experimental results using the data of a large dynamic

urban outdoor environment, and evaluated the performance

of the algorithm. All the laser scan data, training samples

and processing results in this research will be opened at

http://poss.pku.edu.cn.

Future studies will be addressed in extending object types

in classification, and improving robustness in the processing

of small scale objects.
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