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Abstract—In recent years, great efforts have been devoted to
deep imitation learning for autonomous driving control, where
raw sensory inputs are directly mapped to control actions. How-
ever, navigating through densely populated intersections remains
a challenging task due to uncertainty caused by uncertain traffic
participants. We focus on autonomous navigation at crowded
intersections that require interaction with pedestrians. A multi-
task conditional imitation learning framework is proposed to
adapt both lateral and longitudinal control tasks for safe and
efficient interaction. A new benchmark called IntersectNav is
developed and human demonstrations are provided. Empirical
results show that the proposed method can achieve a success
rate gain of up to 30% compared to the state-of-the-art.

Index Terms—deep imitation learning, multi-task learning,
autonomous driving control, interaction with pedestrians

I. INTRODUCTION

Interest in autonomous driving is growing at a rapid pace
[1] and navigating through crowded intersections is one of
the most challenging tasks in autonomous driving [2], [3].
At such scenes, an autonomous vehicle is by no means an
isolated agent driving in a static environment, but in a complex
dynamic transportation system. It needs to adjust its controls
to interact with other road users and navigate the scene safely
and efficiently. The situation is more challenging when inter-
acting with pedestrians, who have more free and unpredictable
movements that introduce great uncertainties [4], [5]. The
autonomous vehicle must follow socially compliant rules in
order to be understood and accepted by pedestrians [6].

Current autonomous driving systems are mainly modular
[7], [8], which are composed of individual modules for percep-
tion, localization, decision-making, planning and control tasks.
Given pre-planned driving routes and mission points, the agent
generates driving policies at multiple levels of abstraction.
To interact with other road users, modules such as object
detection and tracking [9], trajectory prediction [10], collision
and risk analysis [11] are usually involved. The results are
fed into a driving behavior generation module, which seeks
the optimal policy by evaluating safety, efficiency, etc., using
hand-crafted rules and fine-tuned parameters. In such cases,
today’s autonomous driving systems choose to tune its param-
eters to guarantee safety first, leading many to complain about
conservative behavior, inefficiency and inhuman driving.
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As an emerging trend, end-to-end autonomous driving has
attracted great attention in the latest research [12]–[14], thanks
to the rapid development and impressive success of deep learn-
ing techniques. Compared with traditional microscopic vehicle
behavioral models, deep learning methods can better model
the highly non-linear procedure of driving at complex scenes.
Such systems learn a deep model that maps sensory input to
control actions in an end-to-end fashion, where deep reinforce-
ment learning (DRL) [15]–[17] and deep imitation learning
(DIL) [18]–[22] are the most representative learning methods.
DRL learns from online trial and error (i.e., interaction with
the environment), which can be dangerous in the real world.
Therefore, most current DRL methods [15]–[17], [23], [24]
rely heavily on simulators. On the other hand, DIL learns from
expert demonstrations and can be executed offline, which is
important for safety-critical applications such as autonomous
driving [19], [20]. Furthermore, DIL can learn from human
drivers’ data, where large amount of demonstration data can be
easily collected using low-cost on-board sensors during road
driving by human experts.

This work investigates DIL-based end-to-end autonomous
control policy learning for intersection navigation with pedes-
trian interaction. In such tasks, the autonomous agent needs
to perform both lateral and longitudinal controls to navigate
through the intersection safely and efficiently, and interact
friendly with pedestrians on crosswalks by imitating human
experts. When encountering a pedestrian, the autonomous
agent can choose to yield or pass through longitudinal control,
and meanwhile steer through lateral control. Such behavior is
modeled implicitly through imitative learning of human driver
data. However, lateral and longitudinal control are two tasks of
very different properties. Various scene features have different
importance in accomplishing each task. Besides, lateral and
longitudinal control are manipulated by the human driver’s
feet and hands respectively, showing different control vibration
tolerances in the expert’s demonstration data. Furthermore, the
need for friendly interaction requires that unfriendly events
should be rare, such as forcing pedestrians to abruptly stop due
to inappropriate driving strategies of automated agents. There
are also literature works on DIL-based autonomous control
policy learning that addressed intersection scenarios [19], [20],
[25]. However, none of these works focus on the interaction
with pedestrians, and the different properties of lateral and
longitudinal control are ignored.

To this end, a multi-task conditional imitation learning
(MTCIL) approach is proposed by extending the popular
conditional imitation learning (CIL) [19] framework. Although
lateral and longitudinal controls can be related, many au-
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TABLE I
REPRESENTATIVE DEEP IMITATION LEARNING METHODS FOR AUTONOMOUS DRIVING CONTROL POLICY LEARNING

Category Model Scenario Control

Main Scenario Intersection Navigation Interaction
with Pedestrian Type Separate

Modeling
Direct

Perception
[26] Highway Driving # None Lat. & Lon. "

[25] Urban Navigation " None Lat. & Lon. "

End-to-end

[18] Road Following # None Lat. #

[19] Urban Navigation " Few Lat. & Lon. #

[27] Urban Navigation " Few Lat. & Lon. #

[17] Urban Navigation " Few Lat. & Lon. #
* Lat. and Lon. are abbreviations for “Lateral” and “Longitudinal” respectively.

tonomous driving systems manage them separately, but share
the same perception results [12], [28]. Following such struc-
tures, this work designs a multi-task learning framework, in
which both controls share the same scene encoding module,
while they map scene descriptors to actions separately. Ho-
moscedastic uncertainties [29] that are inherent to both tasks
are estimated and used for weighting the loss in training.
Evaluating control models on static datasets is not enough
due to compounding error caused by covariate shift [30],
closed-loop evaluation is essential. This research use the high-
fidelity CARLA simulator [31] in experiments, where a new
benchmark called IntersectNav was developed, in which about
2900 human driving trajectories on 41 routes were collected at
six intersections under different conditions. In addition, new
evaluation protocols and metrics are defined to enrich the crite-
ria of previous benchmarks. The performance of the proposed
method is extensively studied. Although we focus on interac-
tion with pedestrians, the generalizability to vehicles is demon-
strated in experiments. Experimental results show that our
model achieves up to 30% success rate gain compared to the
state-of-the-art. The benchmark, collected dataset and videos
are available at https://github.com/zhackzey/IntersectNav. Our
main contributions are:

• A multi-task conditional imitation learning framework is
proposed for autonomous navigation at crowded inter-
sections that require interaction with pedestrians, which
leverages homoscedastic uncertainties of the lateral and
longitudinal control tasks.

• A new benchmark IntersectNav is developed on three as-
pects: Ped-Only for interaction with pedestrians, Ped-Veh
for interaction with both pedestrians and environmental
vehicles and Mul-Dri for multiple driving styles. New
evaluation protocols and metrics are proposed.

• Extensive experiments are conducted to evaluate the
proposed method on the autonomous agent’s reliability in
task completion, control quality and generalization. Supe-
rior performance of the proposed method is demonstrated
compared to the state-of-the-art.

Our paper is organized as follows. Section II related work.
Section III the proposed method. Section IV the proposed
benchmark. Section V experimental results and Section VI
our conclusion.

II. RELATED WORK

A. DIL for Autonomous Driving Control Policy Learning

Methods can be divided into two categories: direct percep-
tion methods and end-to-end methods. Comparisons between
representative methods are shown in Tab. I.

Direct perception methods [25], [26] utilize neural networks
to extract compact intermediate representations which are then
passed to subsequent decision and control modules. Interme-
diate representations can be chosen as predicted affordances
presented in CAL [25], such as distance to the preceding
vehicle and distance to centerline. Typically, direct perception
methods rely on carefully designed functions or controllers
to map the predicted mediated perception results to the final
control. Therefore, the different characteristics of lateral and
longitudinal control can be taken in consideration through
different control functions. However, well design of both
mediated representations and control functions requires system
expertise, which is often case-by-case and sub-optimal.

End-to-end methods [18], [19], [32] learn to map raw sensor
input (e.g., images) directly to control signals (e.g., acceler-
ation, steer angle). Bojarski et al. [18] successfully learned
a steering policy. However, their model is only suitable for
lane keeping and has difficulty in addressing complex scenar-
ios. Codevilla et al. proposed Conditional Imitation Learning
(CIL) [19], where the output is conditioned on high-level
commands. Furthermore, CILRS [20] is an improved version
of CIL. In general, offline imitation learning has difficulty in
generalizing to dense traffic due to the instinctive covariate
shift problem [30]. Another problem is causal confusion [33],
where the model cannot distinguish spurious correlations from
true causes in observed training demonstration patterns. A
large body of CIL-based work has been proposed to address
these issues. Privileged supervisions such as road maps (LBC
[21]) or BEV representations (Roach [17]) are used as input.
Object-level detections such as vehicles and pedestrians can be
integrated into the input, reducing the perceptual burden on
DNNs compared to front-view images. Although privileged
information can be easily and efficiently accessed in the
simulator, retrieving it from real-world observations is non-
trivial. To overcome the covariate shift problem, some works
[21], [27] employ DAgger [30] to transfer offline imitation
learning to online refinement. Alternatively, online/on-policy
reinforcement learning is utilized for more exploration, where
an offline trained IL agent serves as the initialization of the RL
agent (CIRL [16], LSD [34]), or an IL agent imitates a well-
trained RL agent (Roach [17]). However, both DAgger and
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online RL can only perform effectively in simulation because
accessing online demonstrations in the real world is non-
trivial. They also suffer from expensive training costs. Besides,
a well-designed reward function is crucial for the learned
policy [13], which may not reflect real human driving be-
havior. To overcome the difficulty of defining optimal reward
functions, inverse reinforcement learning (IRL) approaches
have also been investigated to imitate human driving behaviors
[35]–[39]. However, model-based IRL [35], [37], [39] re-
quires perfect knowledge of the system dynamics or transition
function, model-free one [38] requires online interaction with
environment, and the computational burden of IRL can be
heavy as they often iteratively solves forward RL problems
with each new reward function derived.

Our work differs from the above works in several ways.
First, as is shown in Tab. I, few methods focus on interaction
with pedestrians at intersections. Although methods such as
[17], [19], [27] deal with urban scenarios containing pedes-
trians, most pedestrians are generated across the large-scale
town in simulation. The probability of autonomous agents
interacting with pedestrians at crosswalks is small. However,
our work focuses on intersection scenarios where interaction
with pedestrians is unavoidable. Second, we take into account
the intrinsic difference between lateral and longitudinal control
through separate modeling, which is neglected by current end-
to-end DIL methods. Third, we learn from the human expert’s
rather than an autopilot agent’s demonstrations in previous
work. Furthermore, our strict offline learning scheme is more
suitable for real-world deployment.

B. Intersection Navigation with Pedestrian Interaction

Pedestrians are one of the most vulnerable traffic partici-
pants at intersections, whose microscopic movement behavior
can be modeled by force-based concepts [40]–[43]. It is hard
to accurately predict the pedestrians’ intentions due to their
complex internal and external stimuli (e.g., they may be
distracted [44] or suddenly change their mind [45]). Therefore,
the interaction between autonomous driving and pedestrians
is an important research topic receiving increasing attention
in motion planning [46], traffic simulation [43], [47] and
intelligent vehicles [5], [48]. Traditional methods analyze
the vehicle-pedestrian conflicts using integrated microscopic
simulation models [49]. We focus on deep learning methods,
which are briefly reviewed below.

Some methods build on Partially Observable Markov De-
cision Process (POMDP) to solve the navigation problem
amongst pedestrians [46], [50]. Bai et al. [50] modeled pedes-
trian intentions as their target locations. The behavior of
the autonomous agent is conditioned on the intention hidden
variable. Luo et al. [46] proposed a POMDP approach that
models both pedestrian intentions and interactions through a
pedestrian motion model predictor. However, online POMDP
planners are complained of high computational burden and
time inefficiency, limiting their application in real-world au-
tonomous driving platforms. Different from POMDP that
explicitly models the interaction, some methods utilize special
neural network architectures to capture the interplay between

agents. Yao et al. [51] proposed to use Graph Attention
Network (GAT) to model the vehicle-vehicle interaction and
vehicle-motorcycle interaction at mixed-flow intersections.

Reinforcement learning is an alternative approach [15], [45],
[52]. Bouton et al. [15] presented the combination of a model-
checker and deep Q-learning to derive efficient policies with
probabilistic safety guarantees. A scene decomposition method
is proposed to generalize to more pedestrians. Papini et al.
[45] leveraged reinforcement learning to learn a function that
specifies the safe speed limit of an autonomous vehicle when
interacting with pedestrians. The safe speed function acts as
a high-level behavioral directive for the vehicle. However,
these methods may be limited by their few agents settings
[45] and simple 2D simulation [15], [52]. Although some
deep imitation learning works [17], [19], [27] also consider
intersection navigation, they don’t focus on interaction with
pedestrians.

Our work differs from above works in several ways. First,
we leverage DIL through human demonstrations to learn inter-
action without explicitly modeling and inferring the pedestrian
intentions (which can be difficult and imprecise). Second, our
end-to-end framework avoids the time-consuming computation
in online POMDP planning. Third, with the help of high-
fidelity 3D simulation, our work can handle more complex
and diverse vehicle-pedestrian interaction scenarios.

C. Multi-task Learning

Multi-task learning [53] aims to improve learning efficiency
by learning multiple complimentary tasks from shared rep-
resentations. Many multi-task methods have been proposed
for computer vision. For semantic tasks, classification and
semantic segmentation are learned in [54]. For geometry
and regression tasks, depth, surface normals and semantic
segmentation are learned in [55].

Some works build on multi-task learning and learn au-
tonomous driving policies [56]–[58]. [57] used prediction of
future actions and states as side tasks and learned together
with primary control task. [56], [58] trained the policy together
with semantic segmentation task to obtain a meaningful and
generic feature space. Our method differs from these meth-
ods in several ways. Instead of introducing side tasks that
increases training cost, we split the primary task into lateral
and longitudinal tasks, which are learned together in multi-
task setting. Since two tasks have different properties and
units of measure, we estimate their inherent task uncertainty
(i.e., homoscedastic uncertainty). Building upon the modeled
uncertainty, weights in multi-task loss are learned adaptively.
Empirical results demonstrate our effectiveness.

III. METHODOLOGY

A. Scenario

This work studies the scenario of an autonomous driving
agent navigating through a densely populated intersection,
where it needs to adjust its controls and interact safely
with other traffic participants. In this research, we focus on
interaction with pedestrians, the generalizability to vehicles
is demonstrated in experiments. As shown in Fig. 1, the
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Routes planned to complete a left turn, 
right turn or go straight mission

turn right

Lon. Cmd.: decelerate, accelerate and 
maintain

Different Lat. Cmd. 

Lat. Cmd.: follow lane go straight turn left

start pointMission Points: end point (randomly chosen from available routes)

Fig. 1. Illustration of intersection scenarios. Given a planned route and high-
level commands, the agent needs to complete three kinds of missions.

autonomous vehicle completes the missions of left turn, right
turn and go straight at the intersection, guided by the route
from a start point to an end point and commands issued by a
higher-level module. To complete a mission, the agent needs to
perform a sequence of driving behaviors, hereinafter referred
to as commands, each of which is completed by a sequence
of control actions. Specifically, lateral commands include
follow lane, go straight, turn left and turn right. Longitudinal
commands are decelerate, maintain and accelerate.

B. Conditional Imitation Learning (CIL)

This research follows the Conditional Imitation Learning
[19] framework to formulate the problem as follows: Human
driving demonstration dataset D = {ξi}Ni=1 consist of N
trajectories. Each trajectory ξi is composed of a sequence
of observation-action pairs {(oti, ati, cti)}Tt=1, where oti, a

t
i and

cti denote the observation, action, and high-level command,
respectively. The observations are tuples which include an
onboard front-view RGB image Iti and scalar value ego speed
vti . The actions contain steer angle at,stri ∈ [−1, 1] and
acceleration at,acci ∈ [−1, 1]. The goal is to learn a deep neural
network policy π parameterized by θ that imitates human
driving behavior. The optimal parameters θ∗ are obtained by
minimizing the imitation cost L:

θ∗ = argminθ
∑
j

L(π(oj , cj ; θ), aj) (1)

C. Multi-task Learning

Lateral and longitudinal control are two tasks of very differ-
ent properties. On the one hand, scene features have different
importance in accomplishing each task. Lane markings and
road structures are more important for lateral control task
while obstacles ahead and ego speed have significant influence
on the longitudinal control task. On the other hand, lateral
and longitudinal control have different tolerances for vibration
in the control actions. Faced with the same scenario, the
confidence levels of the lateral and longitudinal controls differ,
reflecting the various uncertainties inherent in these tasks.

In multi-task learning, separate deep models are learned for
each task and different learning objectives are combined in
one loss function [53], [59]. Linear combination is typically

applied by weighting the losses for each individual task
using the hand-tuned hyper-parameters [29]. However, the
search and tuning of hyper-parameters is not trivial. Since
model performance is often sensitive to hyper-parameter, its
versatility may be limited in various scenarios.

Following [29], this work formulates simultaneous lateral
and longitudinal control learning in a multi-task learning
framework, where task-dependent uncertainties are used to
weight tasks. These uncertainties are also learned from data
and optimized simultaneously with model parameters.

D. Task-dependent Uncertainty Loss
We derive from a single regression task such as learning

only lateral or longitudinal control. Let πθ(s) be a DNN policy
model with parameter θ, which takes input data s and outputs
control action a. The likelihood is modeled as a Gaussian with
the mean given by the model output, and the noise scalar σ2

represents task-dependent uncertainty:

p(a|πθ(s)) = N (πθ(s), σ
2) (2)

− log p(a|πθ(s)) ∝ 1

2σ2
‖a− πθ(s)‖2 + log σ (3)

Now consider a multi-task problem that yields two outputs
a1 and a2. Approximately assuming the independence of two
tasks, we have:

p(a1, a2|πθ(s)) = p(a1|πθ(s)) · p(a2|πθ(s))
= N (a1;πθ(s), σ

2
1) · N (a2;πθ(s), σ

2
2)

(4)

− log p(a1, a2|πθ(s)) ∝ 1

2σ2
1

‖a1 − πθ(s)‖2

+
1

2σ2
2

‖a2 − πθ(s)‖2 + log σ1σ2

(5)

Consequently, we have the task-dependent uncertainty loss for
the multi-task learning of lateral and longitudinal controls:

L(θ, σlat, σlon) =
1

2σ2
lat

‖astr − πstrθ (s)‖2

+
1

2σ2
lon

‖aacc − πaccθ (s)‖2 + log σlatσlon

where πθ(s) denotes π(o, c; θ), which is composed of three
sub DNN models, i.e., a feature encoder πfeatθ shared by the
lateral and longitudinal conditional modules πstrθ and πaccθ .
σlat and σlon denote the task-dependent uncertainties of lateral
and longitudinal controls, respectively. We can interpret the
first and second terms in the loss function as the objectives
of each individual task, which are weighted by σlat and σlon,
respectively. Minimizing the loss function with respect to σlat
and σlon can learn their relative weights from data. For exam-
ple, large σlat implies that the lateral control task is inherently
more uncertain, then we have a smaller weight of the task,
and vice versa. Different from literature where the weights of
steer angle and acceleration losses are manually tuned hyper-
parameters, our method adaptively learns to balance between
them. The last term log σlatσlon serves as a regularization for
preventing σlat and σlon from increasing too much.
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Fig. 2. Our proposed multi-task conditional imitation learning (MTCIL) framework. Two separate branches predict lateral and longitudinal control actions,
respectively. Both branches share the same perception representation. For each task, corresponding high-level commands are given by rule-based decision
module to select the target submodules. Task-dependent uncertainties are learned to adaptively adjust task weights.

E. Multi-Task Conditional Imitation Learning

The proposed Multi-Task Conditional Imitation Learning
(MTCIL) architecture is shown in Fig. 2. We take the single-
frame front view image I and the ego velocity value v as
the input to the image encoder and measurement encoder,
respectively. For image encoders, we evaluate the performance
of CarlaNet [19] and ResNet34 [60] in the experiments.
The measurement encoder is a multi-layer perceptron (MLP)
consisting of three fully connected layers. Following [17],
[19], [20], features from two encoders that are at different sizes
are concatenated and passed to the control modules. The lateral
and longitudinal control tasks are completed by a conditional
module, which contains multiple MLPs corresponding to each
lateral or longitudinal command. Given current commands clat
and clon determined by a rule-based model, the corresponding
modules are switched on and responsible for predicting control
actions astr and aacc. Similar to [20], an optional branch
predicting the current speed can be added in our framework
(see Fig. 2), which encourages the perception module to
extract visual cues that reflect the scene dynamics.

Compared with literature work that uses a single deep model
to output both lateral and longitudinal control actions, separate
modeling can greatly improve the performance of longitudinal
control, which is crucial for dense intersections with pedestrian
interactions, as shown in experiments. Furthermore, combin-
ing both controls into a multi-task framework can improve
efficiency by sharing encoders. Meanwhile, the performance
is balanced by weighting tasks according to task-dependent
uncertainties, which can be learned automatically from data.
Note that this framework can be easily extended to allow more
side-tasks such as semantic segmentation.

IV. A NEW BENCHMARK: INTERSECTNAV

We propose a new benchmark named IntersectNav in this
section. As shown in Tab. II, unlike previous benchmarks
[20], [31], [61], we focus on intersections that extensively
challenge the capability of the autonomous agent to interact
with pedestrians. Although some benchmarks include a certain
number of pedestrians, they are randomly scattered throughout
the city (e.g., on pavements far away from ego car), resulting
in much less interaction with pedestrians at intersections than
ours. Specifically, we use CARLA [31] driving simulator
0.9.7 for realistic 3D simulation. Compared to the 0.8.X
version used in previous benchmarks [20], [31], the graphics
and simulation behavior in 0.9.7 has been further improved,
making it more complex and realistic.

A. Scenarios

1) Scene and Mission: Demonstrated in Fig. 3, 6 different
US-style intersections from two towns are selected for eval-
uation. Four scenes are used for train and validation while
the other two are reserved for test. We configure the available
start and goal points, based on which 41 reference paths in
total are generated through standard A* algorithm. Reference
paths in test scenes and train scenes are not necessarily the
same due to their different road structures. The benchmark
adopts an episodic setup. For each episode at an intersection,
given a route randomly chosen from available configura-
tions, the ego vehicle is generated at the start point of the
route. The weather is randomly selected from train weathers
{ClearNoon, CloudyNoon, WetNoon, HardRainNoon} or new
weathers {ClearSunset, CloudySunset, WetSunset, HardRain-
Sunet}. Three missions are considered, i.e., performing left
turn/go straight/right turn and navigate through the intersection
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Fig. 3. Benchmark scenes and human demonstration trajectories of dataset Ped-Only.

(c.f. Fig. 3 row 2). The benchmark supports simulation of
pedestrians and environmental vehicles, with which the au-
tonomous agent needs to interact.

2) Simulation of Pedestrians: CARLA provides APIs for
users to specify the pedestrians’ appearances, destinations
and walking speeds. We refer to the former work [19] and
set our parameters as follows. In each episode, a random
number of 20-30 pedestrians are generated to walk through the
crosswalks to reach randomly assigned goals. The maximum
walking speed of each pedestrian is randomly chosen in the
range [1.3, 1.8] m/s. For now, the pedestrians’ navigation and
their interactions with vehicles are handled by CARLA built-
in AI controllers. We assign each pedestrian a random target
point to lead a path across the street. If the path is blocked, the
pedestrian will wait a few seconds. If the path is still blocked,
a new target point is assigned randomly by CARLA, leading
to a new path across the road or back.

3) Simulation of Environmental Vehicles: Apart from
pedestrians, the simulation environment can be configured to
introduce environmental vehicles. In each episode, a random
number of 6-15 environmental vehicles are generated at ran-
dom spawn points around the intersection area, which are
controlled by CARLA built-in autopilot agents. During the
navigation through intersections, they would avoid collision,
follow traffic lights and drive at target speed of 25Km/h,
leaving at least 5m between themselves and leading vehicles.
In this setting, the autonomous agent needs not only interact

with pedestrians at crosswalks, but also other vehicles nearby.

B. Evaluation Metrics

During the closed-loop simulation for evaluation, the au-
tonomous agent and pedestrians are initialized according to
protocols described above. At each simulation step, current
observations and commands are fed into the control model.
Since CARLA simulator only accepts steer angle and ac-
celeration values in the range of [−1.0, 1.0], the network’s
control outputs are clipped by this range and passed to the
actuators in CARLA. The backend engine simulates the world
dynamics and moves on to the next time step. This process
iterates until an episode is terminated. Since human drivers
may operate differently in the same or similar situations, i.e.,
there is stochasticity. There is no single correct answer for
human driver control. Therefore, this work uses the following
metrics to assess the reliability of the learned model.

1) Metrics of Task Completeness: The performance in
completing the missions is one important evaluation metric.
We consider four possible events that the episode ends with:
collision, lane invasion, timeout and success. Detailed infor-
mation can be found in Tab. II. The success rate is calculated
as the ratio of the number of successful episodes to the total
number of simulated episodes. The other rates are calculated
similarly. The collision rate, timeout rate and lane invasion rate
reflect an agent’s performance in terms of safety, efficiency and
traffic rules, respectively.
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TABLE II
CONSIDERED EVENTS IN OUR BENCHMARK AND COMPARISON TO OTHER BENCHMARKS

Benchmark Pedestrians
Number

Failure
Events

Definition
of Success Metrics

Original
CARLA

Benchmark [31]

rare pedestrians
at each intersection

1. collision with static object/car/pedestrian
2. opposite lane
3. sidewalk

the agent reaches the
goal regardless of what
happened during the
episode

1. success rate
2. avg. distance travelled
between infractions

NoCrash
Benchmark [20]

few pedestrians
at each intersection

1. collision with static object/car/pedestrian
2. timeout
3. traffic light violations

the agent reaches the
goal under a time limit
without colliding with
any object

1. success rate
2. collision rate
3. timeout rate

CARLA
Leaderboard [61] not mentioned

1. collision with static object/car/pedestrian
2. running a red light/stop sign
3. timeout

not applicable
1. driving score
2. route completion rate
3. infraction penalty

IntersectNav
Benchmark

(Ours)

20-30 pedestrians
at each intersection

1. collision with static object/pedestrian
2. lane invasion (invading other lanes more
than five times or drive out of the road)
3. timeout (failure to arrive at the goal
within 1000 steps)

the agent reaches the
goal under a time limit
without any failure
events happened
happened

1. success rate
2. collision rate
3. timeout rate
4. lane invasion rate
5. other metrics reflecting
control quality (see Tab.III-E)

TABLE III
METRICS OF CONTROL QUALITY

Metric(Unit) Description Formula

Intense Actions(#) Average times of the autonomous agent’s intense actions
that are too large

1
N

∑N
i=1

∑Ti
t=1 1[a

str
t /∈ (εlowstr , ε

up
str) or a

acc
t /∈ (εlowacc , ε

up
acc)]

Disruption to
Pedestrians(#)

Average times of pedestrians pj , j = 1...Mi, disrupted by
the autonomous agent (e.g., emergent stop in close range)

1
N

∑N
i=1

∑Ti
t=1

∑Mi
j=1 1[pj .get disrupted() = True]

Deviation from
Waypoint(m)

Mean location
−→
loct’s deviation from centerline represented

by the current nearest waypoint −→wpct and next waypoint −→wpnt
1
N

∑N
i=1

∑Ti
t=1

(−→wpnt −
−→wpct )×(

−→
loct−−→wpct )

|−→wpnt −
−→wpct |

Deviation from
Destination(m) Mean final location

−→
locTi

’s deviation from the goal location −→g i
1
N

∑N
i=1 |
−→
locTi

−−→g i|

Heading Angle
Deviation(◦)

Mean final heading θTi
’s deviation from lane direction δi

at the episode ending
1
N

∑N
i=1 |θTi

− δi|

Total Step(#) Average total steps for each episode 1
N

∑N
i=1 Ti

2) Metrics of Control Quality: Aside from above metrics
that consider task completion, we also define metrics to
evaluate the model’s control quality. The details are provided
in Tab. III-E. By counting the number of intense actions
and pedestrians getting disrupted, we can further analyze the
driving comfort of the autonomous agent and its influence
on pedestrians. The deviations consider the control precision
while total steps measures the efficiency of the learned model.

C. Human Demonstration Dataset

CARLA Simulator

Simulate 
driving suite

Human 
Driver

Observations

Manipulation

Control signals

Rule-based
decision

Commands

Front-view image

Measurement 𝑴

Measurement & Map & Mission

Human Demonstrations 
Dataset 𝓓

Mission T

𝑎#$ 𝑜#$ 𝑐#$

{(𝑜#$, 𝑎#$, 𝑐#$)}$%&'

Fig. 4. Data collection procedure. The human operator manipulates the driving
suite to demonstrate the mission in CARLA simulator.

inside intersection

follow lane angle (veh.head, waypt.dir) < - 𝛿!

turn left angle (veh.head, waypt.dir) < 𝛿"

turn rightgo straight

Input: vehicle pose/speed, target speed, next waypoint, obstacle
distance, angle thresholds 𝛿!, 𝛿" > 0; distance thresholds 𝛿#> 𝛿$ > 0, 
speed thresholds 𝛿%, 𝛿& > 0
Output: 1) lat. cmd. in { follow lane, turn left, turn right, go straight}

Output: 2) lon. cmd. in { decelerate, maintain, accelerate}

YN

Y N

NY

obstacle distance < 𝛿$

decelerate

Y

obstacle distance < 𝛿#

N

decelerate

veh.spd > 𝛿%

maintain

NY

Y

veh.spd – tar.spd > 𝛿&

N

decelerate

Y

tar.spd – veh.spd > 𝛿&

N

accelerate maintain

Y N

Fig. 5. Rule-based decision module.

1) Data Collection Procedure: As is shown in Fig. 4, we
collect human driving demonstrations in CARLA through the
driving suite that includes a dual-motor force feedback wheel
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Fig. 6. The driver profile of dataset Mul-Dri. The top and middle are histograms of steer and acceleration, respectively. The bottom is the bivariate distributions
of steer and acceleration. The darker the color, the higher the kernel density.

TABLE IV
STATISTICS OF DATASETS

Category Datasets
Ped-Only Ped-Veh Mul-Dri

Frames (Trajectories) by Scene
Scene0 12113 (150) 13980 (167) 16263 (234)
Scene1 10589 (147) 11572 (135) 14949 (236)
Scene2 16737 (199) - 23400 (313)
Scene3 8312 (119) - 12278 (200)
Scene4 13350 (186) - 23202 (305)
Scene5 14682 (187) - 19568 (301)

Frames (Trajectories) by Mission
Left turn 25952 (229) 8609 (70) 35314 (383)

Go straight 25253 (515) 9750 (152) 42885 (821)
Right turn 24578 (244) 7193 (80) 31461 (385)

Frames by Lat. Cmd.
Follow lane 34812 11549 46427

Turn left 18015 6081 25101
Turn right 13719 4587 18591
Go straight 9237 3335 19541

Frames by Lon. Cmd.
Decelerate 16258 5723 27784
Maintain 25432 4529 5793

Accelerate 34093 15300 76083
* Datasets Ped-Only and Ped-Veh were collected from one

driver. Dataset Mul-Dri was collected from ten drivers.

and a floor pedal. The human driver is provided with real-
time front-view RGB images and bird-view images. Reference
routes are projected onto the bird-view map to provide the
mission information. Real-time high-level driving commands
from a rule-based decision module (cf. Fig. 5) are provided
for reference. In each episode, the operator is asked to keep
a preferred 20 km/h speed and drive through the intersection
following the high-level commands.

At random time steps, a triangular perturbation is added to
the human’s steer angles with probability 0.1. This technique
aims to collect experts’ demonstrations that recover from
perturbations. Once an episode is over, the operator can review

this episode’s metrics in Tab. III-E. Data from successful
episodes with good control metrics is stored. We record raw
sensor data (e.g., RGB/depth images, ego’s speed and poses,
etc.) along with the expert’s demonstrations (e.g., control steer
angle/throttle/brake, corresponding high-level commands). The
observation ot, expert action at and high-level commands
ct = (ctlat, c

t
lon) are bounded together as one tuple (ot, at, ct),

which serves as a training sample. Meta task information such
as town/scene/pose index and weather are also recorded.

2) Dataset Statistics: Focusing on interactions with pedes-
trians, a dataset “Ped-Only” was developed in scenarios
containing only pedestrians. Over 30 hours of driving data
was collected by an experienced human driver at six inter-
sections, containing more than 950 trajectories. The collected
trajectories are shown in Fig. 3 and the detailed statistics are
given in Tab. IV.

To evaluate the method at more general scenes, a supple-
mentary dataset “Ped-Veh” was developed containing both
pedestrians and environmental vehicles. Over 9 hours of
driving data was collected by the human driver at two intersec-
tions, i.e., scene 0 & 1, containing more than 300 trajectories.
The statistics are given in Tab. IV.

To evaluate the effect of various driving styles, a dataset
“Mul-Dri” was developed. It contains data from 10 human
drivers, who need to interact with pedestrians and environmen-
tal vehicles while driving through intersections. The 10 drivers
range in age from 20s to 50s, with one female and nine male
drivers. By statistically analyzing the steer and acceleration
parameters of each driver in Fig. 6, we can see that 10
drivers demonstrate different driving profiles. Near 1600 valid
trajectories were collected, where each driver drove about 5
hours and provided 160 trajectories under six intersections.
The statistics are given in Tab. IV.

All datasets were developed under four weather conditions,
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i.e., ClearNoon : CloudyNoon : WetNoon : HardRainNoon in a
ratio of 0.45 : 0.17 : 0.18 : 0.19. The total size of our datasets
is much larger than earlier ones [19], [20], which contain 2 and
10 hours of driving data, respectively. However, deep imitation
learning may still face changes in the distribution between
training and testing, which reduces its reliability in new scenes
that are very different from the training ones. We leave this
issue for future work.

D. Dataset Bias Cleaning

𝝐𝒔𝒕𝒓𝒍𝒐𝒘 𝝐𝒔𝒕𝒓
𝒖𝒑

Fig. 7. Histogram of steer data. The value is normalized to [-1, 1].

During data collection, biased data happens due to careless
driving, such as large deviation from centerlines, too close
to pedestrians, etc. Therefore, after data collection, each
episode is checked for bias avoidance. On the one hand,
driving parameters such as steer angle astr, acceleration aacc,
centerline-deviation dctr of each frame are examined. Bias-
frame-numbers are counted if one of them is out of range
(i.e., astr /∈ (εlowstr , ε

up
str), aacc /∈ (εlowacc , ε

up
acc), dctr > εctr).

If the bias-frame-number exceeds a predefined limitation (>
εbad frames), the episode is invalidated. On the other hand, if
the episode length is too long (> εlen) representing inefficient
driving, or at any a frame, the ego vehicle has a too close
distance (< εdis2ped) with a pedestrian representing dangerous
driving, the episode is invalidated.

The thresholds used above are predefined by analyzing the
statistics of the collected driving data. For a certain parameter
k, e.g., steer angle in Fig. 7, a histogram ρk is generated to
profile the data distribution. The upper and lower bounds of
the confidence interval (e.g., εupstr and εlowstr ) corresponding to
the confidence level 0.95 are chosen as the thresholds. The
episode length threshold εlen differs across missions such
as left- or right-turn and intersection sizes, whereas it is
correlated with the length of reference route lref . Therefore the
threshold εlen(i, j) of intersection i and mission j is estimated
as 2 ∗ lref (i, j). As for εdis2ped, its histogram is generated on
data frames which have pedestrians in the front and within a
certain distance dmax = 10m.

E. Safety Criticality Analysis of the Scenes

Referring to the works [62], [63], we evaluate safety crit-
icality of the generated scenes by focusing on pedestrian
interaction during each drive through an intersection scene.
The distance (dis) between the ego vehicle and the nearest
pedestrian is used to assess the safety criticality of pedestrian

Fig. 8. Safety criticality analysis of the generated scenes.

interactions, where criticality is empirically divided into three
levels: pedestrian is nearby (dis< 10m), pedestrian interaction
is needed (dis< 5m) and pedestrian is disrupted (CARLA
alarm). For each driving trajectory, the number of the frames
at each criticality level is counted. The average numbers are
used to evaluate the criticality of each generated driving scene.
To evaluate the performance of intersection navigation with
pedestrian interaction, scenes of different pedestrian numbers
Mped are designed. They are:

• Few: Mped ∈ [0, 10).
• Moderate: Mped ∈ [10, 20).
• Standard: Mped ∈ [20, 30), same setting as we used for

data collection and closed-loop evaluation in Section V-C.
• Many: Mped ∈ [35, 50), which requires the agent to

strike a good balance between safety and efficiency.
Safety criticality is evaluated at Fig. 8 of the generated scenes
with above pedestrian densities. Comparing to the existing
CARLA benchmarks [20], [31], whose pedestrian densities
are similar to few, the scenes of the proposed IntersectNav
benchmark are more critical.

TABLE V
DATASET AND SCENE CONFIGURATION IN EXPERIMENTS

Experiment Dataset Train scenes Evaluation scenes

Exp. 1,2,5 Ped-Only scenes 0,1,3,4 train scenes 0,1,3,4
new scenes 2,5

Exp. 3 Ped-Veh scenes 0,1 train scenes 0,1
new scene 2,5

Exp. 4 Mul-Dri scenes 0,1,3,4 train scenes 0,1,3,4
new scenes 2,5

V. EXPERIMENT

A. Experiment Design
Experiments are designed to evaluates the autonomous

agent’s reliability on the following aspects: 1) performance
in completing driving tasks 2) control quality 3) generaliza-
tion to new conditions, which are introduced below. Tab. V
gives detailed scene configuration in experiments. Train scene
denotes the scene where the training data is collected. New
scene denotes the scene that is not experienced in training.

1) Exp.1 Interaction with Pedestrians: This experiment fo-
cuses on interaction with pedestrians, where models are trained
on dataset Ped-Only and evaluated on scenes with only
pedestrians. The performance, namely, the ability to complete
tasks and control quality are evaluated. Generalization to new
scenes and weathers is also analyzed.
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2) Exp.2 Generalization to Different Numbers of Pedestri-
ans: It aims to evaluate the models’ generalization ability
to different numbers of pedestrians. Models are trained on
dataset Ped-Only and evaluated on scenes having various
pedestrians’ density, e.g., simulating scenes from different
countries.

3) Exp.3 Dealing with both Pedestrians and Vehicles: It
is designed to examine the generalizability of the proposed
method to handle scenarios with both pedestrians and vehicles.
Models are trained on dataset Ped-Veh and evaluated on
scenes where pedestrians and environmental vehicles are both
present.

4) Exp.4 Learning from Multiple Drivers: It is designed
to examine the generalizability of the proposed method to
a variety of driving styles. Unlike other experiments that
learn models from a single driver’s data, this experiment uses
dataset Mul-Dri and learns from 10 drivers with various
behavioral styles. As in Exp. 3, the evaluation is performed in
scenes with both pedestrians and environmental vehicles.

5) Exp.5 Ablation Studies: It is designed to investigate the
importance of different components of the proposed method.
Models are trained on dataset Ped-Only and evaluated on
scenes with only pedestrians.

B. Training Details

All models are trained using Adam optimizer [64] with an
initial learning rate 2e-4, which will be divided by 10 if vali-
dation loss stops decreasing for more than 5 epochs. Dropout
is used after fully connected layers with a probability of 0.5.
Each mini-batch contains 120 samples, which are randomly
sampled from the shuffled train set. We follow Codevilla et
al. and employ a 200 × 88 image resolution for CarlaNet
[19] perception backbone. For ResNet34 backbone, we resize
the image to resolution 224 × 224. If specified, online image
augmentation is performed during training, which includes
Gaussian blur and noise, dropout, adjust of brightness, and
contrast, etc. We follow the authors of CIL [19] and use the
same parameters regarding with image augmentation.

TABLE VI
EXP.1 - TASK COMPLETION RESULTS

Models Succ. Rt. Time. Rt. Lane. Rt. Colli. Rt.
TS & TW (%) ↑ (%) ↓ (%) ↓ (%) ↓
CIL 57.3 ± 2.5 21.1 ± 2.6 5.3 ± 1.7 16.3 ± 2.6
CILRS 67.5 ± 2.7 9.1 ± 3.5 6.4 ± 2.2 17.0 ± 2.8
Ours 91.2 ± 2.0 1.6 ± 2.6 4.5 ± 1.8 2.7 ± 1.9
TS & NW
CIL 52.5 ± 3.1 21.9 ± 3.4 4.8 ± 1.4 20.8 ± 2.5
CILRS 46.7 ± 5.3 33.9 ± 5.6 2.1 ± 1.4 17.3 ± 2.2
Ours 88.6 ± 2.0 1.9 ± 2.6 6.6 ± 1.8 2.9 ± 1.9
NS& TW
CIL 50.4 ± 2.4 23.3 ± 4.2 4.6 ± 3.1 21.7 ± 3.1
CILRS 53.3 ± 2.8 28.7 ± 3.3 2.5 ± 2.4 15.5 ± 2.8
Ours 88.8 ± 3.7 3.1 ± 2.6 4.6 ± 1.6 3.5 ± 1.6
NS & NW
CIL 40.8 ± 4.9 27.1 ± 8.5 1.3 ± 1.7 30.8 ± 5.7
CILRS 32.1 ± 5.5 46.3 ± 6.1 0.4 ± 0.8 21.2 ± 3.3
Ours 86.8 ± 3.6 3.8 ± 2.5 4.7 ± 1.6 4.7 ± 1.6
1 Mean and standard deviation over 5 evaluation seeds.
2 Succ. Rt.: Success Rate, Time. Rt.: Timeout Rate, Lane. Rt.: Lane

Invasion Rate, Colli. Rt.: Collision Rate.
3 TS/NS: Train/New Scene, TW/NW: Train/New Weather.

TABLE VII
EXP. 1 - SUCCESS RATES OF THREE NAVIGATION TASKS

Model Left Turn Go Straight Right Turn
CIL 29.3 ± 4.5 93.8 ± 3.5 35.6 ± 13.9

CILRS 39.6 ± 6.5 96.4 ± 2.0 54.4 ± 9.6
Ours 74.2 ± 6.5 100.0 ± 0.0 93.3 ± 6.7

1 Mean and standard deviation over 5 evaluation seeds.

C. Exp.1 Interaction with Pedestrians

Since offline and online methods cannot be directly com-
pared, this work focuses on offline methods. We choose CIL
[19] and CILRS [20] as our baselines where no additional
supervisions (e.g., reconstructions, BEV representations) apart
from expert demonstrations are used. Our reported multi-
task model uses ResNet34 backbone and uncertainty loss.
We conduct five evaluation runs using five specified random
seeds. During each run, multiple episodes for each route in
our benchmark are simulated to calculate the average metrics.

1) Results of Task Completion: The task completion eval-
uation results are shown in Tab. VI, where the values repre-
sent mean and standard deviation over five evaluation seeds.
Under train scenes and weathers, CIL and CILRS have the
highest success rates (57.3% and 67.5%) compared to other
conditions. However, both models suffer from high collision
rates (∼16%). The timeout rate of CIL is even twice higher
than that of CILRS. We regard this as the inertia problem
[20], where the model creates a spurious correlation between
low speed and no acceleration, inducing excessive stopping
and difficult restarting. CILRS alleviates this problem by
introducing the speed prediction branch. These failures show
that baselines have difficulty in learning longitudinal control
under interactive scenarios. Compared with baselines, our
method has much lower timeout rate and collision rate and
achieves 90% success rate, demonstrating the effectiveness of
separate modeling of lateral and longitudinal control.

We further report success rates of three navigation tasks
under train scene and train weather in Tab.VII. Intuitively,
left turn is the most difficult due to its longest decision and
control procedure. The right turn is next while go straight is the
easiest. The statistics show that the success rate gap between
turn tasks and go straight tasks is much bigger than that
between left turn and right turn. Three tasks all achieve high
performance in go straight under train conditions. However,
baselines perform poorly in turn tasks, resulting in lower
overall success rates than ours.

Shown in Tab.VI, all models experience performance degra-
dation to varying degrees when generalizing to new scenarios
(new scenes or new weathers). This can be interpreted as
the inherent covariate shift problem of imitation learning.
Interestingly, the success rate reduction of CILRS is more
sensitive to weather changes (20.8%) than scene changes
(14.2%). Besides, CILRS’s performance degradation problem
is the most severe among the compared methods. When
transferring to new scene and new weathers, the success rate
reduction of CILRS (35.4%) is much higher than that of CIL
(16.5%). Our method are more robust to new scenes and
weathers with a drop in success rate of only 4.4% compared to
the baselines, which have significantly degraded performance.
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TABLE VIII
EXP. 1 - CONTROL QUALITY RESULTS

Models Intense Actions Disruption to
Pedestrians

Deviation from
Waypoint

Deviation from
Destination

Heading Angle
Deviation Total Steps

TS & TW #, ↓ #, ↓ m, ↓ m, ↓ ◦, ↓ #, ↓
CIL 0.440 ± 0.108 88.848 ± 35.771 1.988 ± 0.233 7.365 ± 0.272 17.187 ± 3.157 385.013 ± 18.176
CILRS 1.300 ± 0.503 75.448 ± 29.667 1.107 ± 0.085 4.598 ± 0.375 14.271 ± 1.615 310.642 ± 33.795
Ours 0.000 ± 0.000 17.219 ± 17.671 0.520 ± 0.029 1.253 ± 0.396 4.368 ± 0.466 308.376 ± 14.951
TS & NW
CIL 0.064 ± 0.035 34.435 ± 7.286 1.527 ± 0.147 9.114 ± 0.814 17.467 ± 1.143 375.848 ± 24.455
CILRS 0.003 ± 0.005 124.845 ± 54.668 1.117 ± 0.126 9.123 ± 0.949 20.901 ± 1.420 482.261 ± 39.933
Ours 0.000 ± 0.000 17.224 ± 17.680 0.520 ± 0.029 1.253 ± 0.396 4.369 ± 0.464 308.392 ± 14.944
NS & TW
CIL 0.167 ± 0.137 110.867 ± 39.536 1.853 ± 0.376 9.502 ± 0.600 21.407 ± 1.808 376.825 ± 16.704
CILRS 0.267 ± 0.077 192.037 ± 36.298 1.361 ± 0.166 7.922 ± 1.098 19.161 ± 3.063 514.867 ± 29.989
Ours 0.000 ± 0.000 36.458 ± 31.388 0.581 ± 0.012 1.390 ± 0.472 5.437 ± 0.679 339.292 ± 16.309
NS & NW
CIL 0.104 ± 0.077 35.142 ± 8.137 1.159 ± 0.148 10.471 ± 0.942 24.189 ± 2.445 425.917 ± 64.926
CILRS 0.004 ± 0.008 144.762 ± 46.157 0.868 ± 0.165 14.279 ± 1.106 26.983 ± 0.170 578.217 ± 40.494
Ours 0.000 ± 0.000 37.492 ± 32.246 0.582 ± 0.012 1.426 ± 0.381 5.988 ± 0.111 346.625 ± 15.805
1 Mean and standard deviation over 5 evaluation seeds.
3 TS/NS: Train/New Scene, TW/NW: Train/New Weather.

2) Results of Control Quality: Evaluation results of control
quality are provided in Tab. VIII, which demonstrate that our
method has better control quality than baselines.

On the one hand, driving comfort is important to passengers.
Our model performs best in intense actions under either train
or new scenarios, which means rare violent driving behaviors.
While CILRS also has small intense actions values under
new weathers, it doesn’t perform as well in train weathers.
Autonomous agents should follow social norms to interact
friendly with pedestrians. The disruption to pedestrians is an
indicator that reflects the degree of influence of autonomous
agents on pedestrians. Tab. VIII shows that our proposed
method achieves the best performance under most conditions.

On the other hand, in all settings, our method deviates
from waypoints by nearly 0.55 m, which is about half of the
baselines. Meanwhile, our deviation from destination remains
low when generalizing to new scenes and weathers, while
other models exhibit a large increase. As for heading angle de-
viation, our model outperforms others, achieving a small error
under 6 degrees. These results demonstrate that our model can
learn more precise control policies than the baselines. Since
other models fail to generalize and result in large timeout rates,
their total steps under test settings are much more than ours,
indicating the higher efficiency of our method.

3) Case Study: Fig. 9 illustrates a case study of closed-loop
simulated trajectories under train and new scenarios. In each
subfigure, eight-episode trajectories are plotted in different
colors, representing success and failure events. The trajectory
points are plotted every four time steps in simulation. The
positions of pedestrians disrupted by the autonomous agent
are also marked with black squares. The trajectories of our
model perform the best in terms of task completion and
control precision. At train scenes, baselines tend to collide
into pedestrians or drive off the road. Besides, they cause more
disturbance to pedestrians than our method. When dealing with
new scenes, CIL and CILRS fail to generalize due to the high
probability of timeout.

Fig. 10 further shows two episodes of CILRS and ours
from Fig. 9 for comparison. The tasks are right turn at train

CIL CILRS Ours

Right
turn
at 

train 
scene 4

Left 
turn
at

new 
scene 5

Fig. 9. Case study of the driving trajectories in Exp. 1 at train and new
scenes. Eight trajectories are plotted (may be stacked) in each subfigure for
illustration. Colors of trajectories: success, timeout, lane invasion, collision.
Black squares mark the location of pedestrians that are disrupted by the
autonomous vehicle.

scene 4. Each subfigure plots the bird-view trajectories and
shows the front-view camera images in chronological order.
The plot of deviations (i.e, distance to goal and distance to
centerline) is also provided. In Fig. 10(a), CILRS failed to
react to the front pedestrians who were very close, resulting
in collision. Besides, its deviation from the reference centerline
increases to 2m. In Fig. 10(b), our model waited for the
pedestrians to avoid collision and then completed the mission.
For comparison, our distance to centerline kept at a relatively
low-level (< 0.5m).

However, it is difficult to analytically explain the failure
cases. On the one hand, deep learning models suffer from
poor interpretability due to their black-box nature. On the other
hand, closed-loop evaluation is essential for the control-level
driving policy study, whereas the stochasticity of closed-loop
evaluation makes it hard to repeat failure cases. Furthermore,
failure is not caused by a single frame’s prediction but by the
compounding error in the driving sequence.
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(a) collision episode of CILRS, right turn
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(b) success episode of Ours, right turn

Fig. 10. Case study of the collision and success episodes for right-turn at
train scene 4 in Fig. 9. In each subfigure, bird-view trajectories are plotted in
left. Front-view camera images in chronological order are shown in right-top.
The plot of distance to goal and centerline is shown in right-bottom.

D. Exp.2 Generalization to Different Numbers of Pedestrians
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Fig. 11. Exp.2 - The results of interaction with various pedestrian density.

In this experiment, models trained on dataset Ped are tested
on scenes having various pedestrians’ densities (c.f. IV-E) to
examine their generalization ability.

Fig. 11(a) compares between models their success rates
under different pedestrians number settings. Failure events
rates are given in Fig. 11(b). The reported values are mean
over 3 evaluation seeds from train scenes and train weathers.
Our model achieved the highest success rates, lowest timeout
and collision rates across the different settings. This reflects

that our model is safer and more efficient than the other two.
One interesting phenomenon is that models have different
sensitivity to different pedestrian numbers. As the pedestrians’
number increases from few to many, the performance of base-
lines shows a nearly monotonic decreasing trend. Our model’s
performance does not decrease too much when generalizing to
either fewer or more pedestrians.

E. Exp.3 Dealing with both Pedestrians and Vehicles
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Fig. 12. The results of learning from a single driver (Exp.3) and multiple
drivers (Exp.4).

This experiment is conducted to examine the generalizabil-
ity of our method to handle scenarios with pedestrians and
vehicles’ both presence. Models were trained from scratch on
the dataset Ped-Veh and evaluated through closed-loop simu-
lation at train scenes 0 & 1 and new scene 2. Fig. 12 reports
the evaluation results on scenarios with both pedestrians and
vehicles. The reported values are mean over 5 evaluation seeds.
Despite the slight decrease in performance when generalizing
to vehicles, our method still outperforms CILRS in success
rate. This demonstrates our method’s ability to generalize to
more realistic complex environments. However, both methods
may collide with environmental vehicles. The problem is
distinct when testing CILRS on new scenes, whose collision
into vehicles rate increases a lot.

F. Exp.4 Learning from Multiple Drivers

Driver heterogeneity has been confirmed to exist in human
driving behaviors by many studies [65]. Different drivers may
follow sub-optimal policies, exhibiting different driving styles.
In the same situation, their actions may conflict with each other
since different drivers may lead to different decisions. This
experiment further explores the performance of the proposed
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Fig. 13. Models for comparison in Exp.5 ablation studies.

TABLE IX
EXP. 5 - ABLATION STUDY TASK COMPLETION RESULTS

Models Succ. Rt. Time. Rt. Lane. Rt. Colli. Rt.
Baselines (%) ↑ (%) ↓ (%) ↓ (%) ↓
CIL\Aug 20.1 ± 1.0 61.1 ± 2.6 0.0 ± 0.0 18.8 ± 2.9

CILRS\Aug 40.3 ± 2.6 45.8 ± 4.5 0.7 ± 1.0 13.2 ± 3.5
CIL 40.8 ± 4.9 27.1 ± 8.5 1.3 ± 1.7 30.8 ± 5.7

CILRS 32.1 ± 5.5 46.3 ± 6.1 0.4 ± 0.8 21.3 ± 3.3
MT+hLoss

CN+MT+hLoss\Aug 64.6 ± 1.7 10.4 ± 0.0 8.3 ± 1.7 16.7 ± 1.7
RN+MT+hLoss\Aug 78.5 ± 2.6 4.2 ± 1.7 2.1 ± 1.7 15.3 ± 1.0

CN+MT+hLoss 72.2 ± 1.0 1.4 ± 1.0 2.1 ± 1.7 24.3 ± 1.0
RN+MT+hLoss 79.5 ± 1.7 1.4 ± 1.0 1.4 ± 1.0 17.7 ± 2.0

MT+uLoss
CN+MT+uLoss 84.0 ± 1.9 4.9 ± 2.3 8.9 ± 0.6 2.2 ± 0.6

RN+MT+uLoss(Ours) 86.8 ± 3.6 3.8 ± 2.5 4.7 ± 1.6 4.7 ± 1.6
1 Mean and standard deviation over 5 evaluation seeds.
2 Succ. Rt.: Success Rate, Time. Rt.: Timeout Rate, Lane. Rt.: Lane Invasion

Rate, Colli. Rt.: Collision Rate.
3 \ means without.

method on learning from a variety of driving styles. The
models are trained on dataset Mul-Dri that are collected from
10 drivers with various behavioral styles. The evaluation is
performed as in Exp.3 where the scenes have both pedestrians
and environmental vehicles. We present the mean evaluation
results over 5 seeds in Fig. 12. Compared to the results of
Exp.3 that were learnt from a single driver, we see some
performance loss in Exp.4, which reflects the challenge of
learning from a variety of driving styles [66]. However, our
method still performs better than baseline, demonstrating its
effectiveness. Addressing driver heterogeneity in imitation
learning is beyond the scope of this work, we leave this topic
to future work.

G. Exp.5 Ablation Studies

Ablation experiments in Fig. 13 are conducted to further
investigate the importance of three components: backbone
image encoder (CN for CarlaNet [19] or RN for ResNet34),
multi-task learning (MT) and loss (hLoss for hard weight
loss and uLoss for uncertainty weighted loss). The influence
of data augmentation (Aug) is also evaluated. All models
are trained on dataset Ped and tested on scenes with only
pedestrians. Detailed results of task completion on new scenes
and new weathers are provided in Tab.IX.

Experiments in the first group compares between differ-
ent backbones and demonstrate that data augmentation is
of vital importance to CarlaNet, whose structure is smaller
than ResNet. Without data augmentation, CIL has a poor
performance due to high timeout rate. Through multi-task
modeling of lateral and longitudinal control, performance of
models in the second group greatly exceeds that of single-task
baselines with respect to success rate and timeout rate.

The last group, which uses uncertainty weighted loss instead
of hard weight loss, achieves the best testing performance.
Our model adaptively learns to balance between lateral and
longitudinal control tasks and further reduces the relatively
high collision rates in the second group.

VI. DISCUSSION, CONCLUSION AND FUTURE WORKS

The traditional microscopic vehicle behavior models have
been studied since the middle of last century [67]. With over
sixty years of research, great results have been achieved.
These models are mainly developed on expert knowledge,
have simple structures and a few explainable parameters, have
been incorporated into ADAS and autonomous driving systems
today. However, these models are too simplified to describe
the highly non-linear procedure of human drivers at complex
driving scenes like intersections.

On the other hand, end-to-end autonomous driving has
been studied since NVIDIA’s pioneering work [18], and has
attracted great attentions in the intelligent vehicle societies
[68]. One of the main advantages is that a deep model can
represent the highly non-linear procedure of a human driver’s
decision-making at complex scenes, and can be learned in
an end-to-end way. Especially for DIL, the cost of dataset
generation is very low as data can be collected during human
drivers’ daily driving. The learned model has the potential to
mimic human drivers’ behavior to achieve human-like driving.

This work studies DIL-based autonomous control for in-
tersection navigation with pedestrians interaction. In order
to navigate through the intersection safely and efficiently,
and interact friendly with the pedestrians on crosswalks, this
research propose a multi-task conditional imitation learning
method to adapt both lateral and longitudinal control tasks
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simultaneously. Homoscedastic uncertainties that are inherent
to both tasks are learned to weight the loss in training. A
new benchmark called IntersectNav is developed and human
demonstrations are collected. Experimental results show that
our method can achieve a high performance.

Although end-to-end autonomous driving has demonstrated
promising results during the last decade, it still faces many
challenges such as poor interpretability, generalization to new
scenes (e.g., domain gap [69]) and the open world problem
[68]. It will take more time and effort for this new but promis-
ing technique to mature. In addition, high-fidelity simulators
are important for closed-loop driving policy studies. For the
task of autonomous navigation at crowded intersections, a
sophisticated pedestrian model that realistically reproduces
pedestrian-vehicle interactions is essential to reduce the gap
between simulation and reality, and to improve the effective-
ness of driving policy learning. For this work, learning from
real-world dataset and closing the sim-to-real loop [70] are
among the most important topics in future studies. On the other
hand, learning driving policies at both decision- and control-
levels, achieving human-like driving by using such as inverse
reinforcement learning (IRL) [71], [72] will also be addressed.
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cheating,” in Conference on Robot Learning, PMLR, 2020, pp. 66–75.

[22] S. Teng, L. Chen, Y. Ai, et al., “Hierarchical interpretable imitation
learning for end-to-end autonomous driving,” IEEE Transactions on
Intelligent Vehicles, pp. 1–11, 2022.

[23] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “End-to-end
deep reinforcement learning for lane keeping assist,” arXiv preprint
arXiv:1612.04340, 2016.

[24] H. Porav and P. Newman, “Imminent collision mitigation with rein-
forcement learning and vision,” in 2018 21st International Conference
on Intelligent Transportation Systems (ITSC), IEEE, 2018, pp. 958–
964.

[25] A. Sauer, N. Savinov, and A. Geiger, “Conditional affordance learning
for driving in urban environments,” in Conference on Robot Learning,
PMLR, 2018, pp. 237–252.

[26] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2015,
pp. 2722–2730.

[27] A. Prakash, A. Behl, E. Ohn-Bar, K. Chitta, and A. Geiger, “Exploring
data aggregation in policy learning for vision-based urban autonomous
driving,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2020, pp. 11 763–11 773.

[28] A. Eskandarian, “Handbook of intelligent vehicles,” in Springer, 2012,
vol. 2, ch. Vehicle Longitudinal and Lateral Control, pp. 165–232.

[29] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using un-
certainty to weigh losses for scene geometry and semantics,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 7482–7491.

[30] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,” in
Proceedings of the International Conference on Artificial Intelligence
and Statistics, JMLR Workshop and Conference Proceedings, 2010,
pp. 661–668.

[31] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning,
PMLR, 2017, pp. 1–16.

[32] D. Pomerleau, “ALVINN: an autonomous land vehicle in a neural
network,” in Advances in Neural Information Processing Systems,
1988, pp. 305–313.

[33] P. de Haan, D. Jayaraman, and S. Levine, “Causal confusion in imi-
tation learning,” Advances in Neural Information Processing Systems,
vol. 32, pp. 11 698–11 709, 2019.

[34] E. Ohn-Bar, A. Prakash, A. Behl, K. Chitta, and A. Geiger, “Learn-
ing situational driving,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2020, pp. 11 296–11 305.

[35] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles for
autonomous vehicles from demonstration,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 2641–2646.

[36] S. Sharifzadeh, I. Chiotellis, R. Triebel, and D. Cremers, “Learning
to drive using inverse reinforcement learning and deep q-networks,”
arXiv preprint arXiv:1612.03653, 2016.

[37] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner,
“Large-scale cost function learning for path planning using deep
inverse reinforcement learning,” Int. J. Robotics Res., vol. 36, no. 10,
pp. 1073–1087, 2017.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3256972

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 14,2023 at 02:42:32 UTC from IEEE Xplore.  Restrictions apply. 



[38] P. Wang, D. Liu, J. Chen, H. Li, and C.-Y. Chan, “Decision making for
autonomous driving via augmented adversarial inverse reinforcement
learning,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), 2021, pp. 1036–1042.

[39] Z. Zhao, Z. Wang, K. Han, et al., “Personalized car following for
autonomous driving with inverse reinforcement learning,” in 2022
International Conference on Robotics and Automation (ICRA), 2022,
pp. 2891–2897.

[40] W. Zeng, P. Chen, H. Nakamura, and M. Iryo-Asano, “Application
of social force model to pedestrian behavior analysis at signalized
crosswalk,” Transportation research part C: emerging technologies,
vol. 40, pp. 143–159, 2014.

[41] W. Zeng, P. Chen, G. Yu, and Y. Wang, “Specification and calibration
of a microscopic model for pedestrian dynamic simulation at signalized
intersections: A hybrid approach,” Transportation Research Part C:
Emerging Technologies, vol. 80, pp. 37–70, 2017.

[42] Q. Chao, P. Liu, Y. Han, et al., “A calibrated force-based model
for mixed traffic simulation,” IEEE Transactions on Visualization and
Computer Graphics, pp. 1–1, 2021.

[43] Y. Han, Q. Chao, and X. Jin, “A simplified force model for mixed
traffic simulation,” Computer Animation and Virtual Worlds, vol. 32,
no. 1, e1974, 2021.

[44] H. Zhu, T. Han, W. K. Alhajyaseen, M. Iryo-Asano, and H. Nakamura,
“Can automated driving prevent crashes with distracted pedestrians? an
exploration of motion planning at unsignalized mid-block crosswalks,”
Accident Analysis & Prevention, vol. 173, p. 106 711, 2022.

[45] G. P. R. Papini, A. Plebe, M. D. Lio, and R. Dona, “A reinforcement
learning approach for enacting cautious behaviours in autonomous
driving system: Safe speed choice in the interaction with distracted
pedestrians,” IEEE Transactions on Intelligent Transportation Systems,
pp. 1–18, 2021.

[46] Y. Luo, P. Cai, A. Bera, et al., “Porca: Modeling and planning for
autonomous driving among many pedestrians,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3418–3425, 2018.

[47] Q. Chao, X. Jin, H.-W. Huang, et al., “Force-based heterogeneous traf-
fic simulation for autonomous vehicle testing,” in 2019 International
Conference on Robotics and Automation (ICRA), 2019, pp. 8298–8304.

[48] A. Rasouli and J. K. Tsotsos, “Autonomous vehicles that interact with
pedestrians: A survey of theory and practice,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 3, pp. 900–918, 2020.

[49] P. Chen, W. Zeng, and G. Yu, “Assessing right-turning vehicle-
pedestrian conflicts at intersections using an integrated microscopic
simulation model,” Accident Analysis & Prevention, vol. 129, pp. 211–
224, 2019.

[50] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online
pomdp planning for autonomous driving in a crowd,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), IEEE,
2015, pp. 454–460.

[51] R. Yao, W. Zeng, Y. Chen, and Z. He, “A deep learning framework for
modelling left-turning vehicle behaviour considering diagonal-crossing
motorcycle conflicts at mixed-flow intersections,” Transportation re-
search part C: emerging technologies, vol. 132, p. 103 415, 2021.

[52] N. Deshpande and A. Spalanzani, “Deep reinforcement learning based
vehicle navigation amongst pedestrians using a grid-based state rep-
resentation,” in 2019 IEEE Intelligent Transportation Systems Confer-
ence (ITSC), IEEE, 2019, pp. 2081–2086.

[53] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE
Transactions on Knowledge and Data Engineering, 2021.

[54] Y. Liao, S. Kodagoda, Y. Wang, L. Shi, and Y. Liu, “Understand scene
categories by objects: A semantic regularized scene classifier using
convolutional neural networks,” in IEEE international Conference on
Robotics and Automation, IEEE, 2016, pp. 2318–2325.

[55] D. Eigen and R. Fergus, “Predicting depth, surface normals and
semantic labels with a common multi-scale convolutional architecture,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2015, pp. 2650–2658.

[56] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of
driving models from large-scale video datasets,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 2174–2182.

[57] I. Kim, H. Lee, J. Lee, E. Lee, and D. Kim, “Multi-task learning with
future states for vision-based autonomous driving,” in Proceedings of
the Asian Conference on Computer Vision, 2020.

[58] K. Ishihara, A. Kanervisto, J. Miura, and V. Hautamaki, “Multi-
task learning with attention for end-to-end autonomous driving,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2021, pp. 2902–2911.

[59] S. Ruder, “An overview of multi-task learning in deep neural net-
works,” arXiv preprint arXiv:1706.05098, 2017.

[60] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[61] C. team, Carla autonomous driving leaderboard, https://leaderboard.
carla.org, CARLA team.

[62] M. Klischat, E. I. Liu, F. Holtke, and M. Althoff, “Scenario factory:
Creating safety-critical traffic scenarios for automated vehicles,” in
2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC), IEEE, 2020, pp. 1–7.

[63] S. Feng, Y. Feng, C. Yu, Y. Zhang, and H. X. Liu, “Testing sce-
nario library generation for connected and automated vehicles, part
i: Methodology,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 3, pp. 1573–1582, 2020.

[64] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[65] Z. Ding, D. Xu, C. Tu, et al., “Driver identification through hetero-
geneity modeling in car-following sequences,” IEEE Transactions on
Intelligent Transportation Systems, 2022.

[66] C. Rui and D. Michie, “Behavioral cloning a correction,” Ai Magazine,
vol. 16, p. 92, 1995.

[67] N. AbuAli and H. Abou-zeid, “Driver behavior modeling: Devel-
opments and future directions,” International Journal of Vehicular
Technology, pp. 1–12, 2016.

[68] L. Le Mero, D. Yi, M. Dianati, and A. Mouzakitis, “A survey on
imitation learning techniques for end-to-end autonomous vehicles,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 9, pp. 14 128–14 147, 2022.

[69] M. Schutera, M. Hussein, J. Abhau, R. Mikut, and M. Reischl,
“Night-to-day: Online image-to-image translation for object detection
within autonomous driving by night,” IEEE Transactions on Intelligent
Vehicles, vol. 6, no. 3, pp. 480–489, 2021.

[70] Y. Chebotar, A. Handa, V. Makoviychuk, et al., “Closing the sim-to-
real loop: Adapting simulation randomization with real world experi-
ence,” in 2019 International Conference on Robotics and Automation
(ICRA), 2019, pp. 8973–8979.

[71] M. Menner, K. Berntorp, M. N. Zeilinger, and S. D. Cairano, “Inverse
learning for data-driven calibration of model-based statistical path
planning,” IEEE Transactions on Intelligent Vehicles, vol. 6, no. 1,
pp. 131–145, 2021.

[72] L. Guo and Y. Jia, “Inverse model predictive control (impc) based
modeling and prediction of human-driven vehicles in mixed traffic,”
IEEE Transactions on Intelligent Vehicles, vol. 6, no. 3, pp. 501–512,
2021.

Zeyu Zhu received B.S. degree in computer science
from Peking University, Beijing, China, in 2019,
where he is currently pursuing the Ph.D. degree
with the Key Laboratory of Machine Perception
(MOE), Peking University. His research interests
include intelligent vehicles, imitation learning and
reinforcement learning.

Huijing Zhao received B.S. degree in computer
science from Peking University in 1991. She ob-
tained M.E. degree in 1996 and Ph.D. degree in 1999
in civil engineering from the University of Tokyo,
Japan. From 1999 to 2007, she was a postdoctoral
researcher and visiting associate professor at the
Center for Space Information Science, University of
Tokyo. In 2007, she joined Peking University as a
tenure-track professor at the School of Electronics
Engineering and Computer Science and became an
associate professor with tenure on 2013. She is

now a full professor with tenure at the School of Intelligence Science and
Technology, Peking University. She has research interest in several areas
in connection with intelligent vehicle and mobile robot, such as machine
perception, behavior learning and motion planning, and she has special
interests on the studies through real world data collection.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3256972

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 14,2023 at 02:42:32 UTC from IEEE Xplore.  Restrictions apply. 

https://leaderboard.carla.org
https://leaderboard.carla.org

	Introduction
	Related Work
	DIL for Autonomous Driving Control Policy Learning
	Intersection Navigation with Pedestrian Interaction
	Multi-task Learning

	Methodology
	Scenario
	Conditional Imitation Learning (CIL)
	Multi-task Learning
	Task-dependent Uncertainty Loss
	Multi-Task Conditional Imitation Learning

	A New Benchmark: IntersectNav
	Scenarios
	Scene and Mission
	Simulation of Pedestrians
	Simulation of Environmental Vehicles

	Evaluation Metrics
	Metrics of Task Completeness
	Metrics of Control Quality

	Human Demonstration Dataset
	Data Collection Procedure
	Dataset Statistics

	Dataset Bias Cleaning
	Safety Criticality Analysis of the Scenes

	Experiment
	Experiment Design
	Exp.1 Interaction with Pedestrians
	Exp.2 Generalization to Different Numbers of Pedestrians
	Exp.3 Dealing with both Pedestrians and Vehicles
	Exp.4 Learning from Multiple Drivers
	Exp.5 Ablation Studies

	Training Details
	Exp.1 Interaction with Pedestrians
	Results of Task Completion
	Results of Control Quality
	Case Study

	Exp.2 Generalization to Different Numbers of Pedestrians
	Exp.3 Dealing with both Pedestrians and Vehicles
	Exp.4 Learning from Multiple Drivers
	Exp.5 Ablation Studies

	Discussion, Conclusion and Future Works
	Biographies
	Zeyu Zhu
	Huijing Zhao


