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Understanding the Challenges When 3D Semantic
Segmentation Faces Class Imbalanced

and OOD Data
Yancheng Pan , Member, IEEE, Fan Xie, Member, IEEE, and Huijing Zhao , Senior Member, IEEE

Abstract— 3D semantic segmentation (3DSS) is an essential
process in the creation of a safe autonomous driving system.
However, deep learning models for 3D semantic segmentation
often suffer from the class imbalance problem and out-of-
distribution (OOD) data. In this study, we explore how the class
imbalance problem affects 3DSS performance and whether the
model can detect the category prediction correctness, or whether
data is ID or OOD. For these purposes, we conduct two
experiments using four representative 3DSS models and five
trust scoring methods, and conduct both a confusion and feature
analysis of each class. Furthermore, a data augmentation method
for the 3D LiDAR dataset is proposed to create a new dataset
based on SemanticKITTI and SemanticPOSS, called AugKITTI.
We propose the wPre metric and TSD for a more in-depth
analysis of the results, and follow are proposals with an insightful
discussion. Based on the experimental results, we find that:
1) classes are not only imbalanced in their data size but also in the
basic properties of each semantic category; 2) intraclass diver-
sity and interclass ambiguity make class learning difficult and
greatly limit the models’ performance, creating the challenges of
semantic and data gaps; 3) trust scores are unreliable for classes
whose features are confused with other classes. For 3DSS models,
those misclassified ID classes and OODs may also be given high
trust scores, making the 3DSS predictions unreliable, and leading
to the challenges in judging 3DSS result trustworthiness. All of
these outcomes point to several research directions for improving
the performance and reliability of the 3DSS models used for real-
world applications.

Index Terms— 3D LiDAR, semantic segmentation, OOD detec-
tion, class imbalance.

I. INTRODUCTION

SEMANTIC segmentation [1], [2] is a fundamental
perception task that finds semantically interpretable cat-

egories of each unit of scene data. The unit can be an
image pixel [1] or 3D point [3]. A fine-grained semantic
understanding is essential for an autonomous agent to navigate
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safely and smoothly in complex driving scenes. 3D LiDAR
sensors are currently popular devices for mobile robots [4] and
autonomous driving systems [5], [6] and can capture realistic
images of the surroundings with rich 3D geometric shapes.
Semantic segmentation using 3D LiDAR data as input (3D
semantic segmentation, 3DSS), has been widely studied, and
deep learning techniques have made promising progress in this
task in recent years [3], [7].

Deep models require a large amount of training data. The
performance limitation caused by insufficient training data
is called “the data hungry effect” [8]. As described in [9],
3DSS studies that use deep learning techniques suffer severe
data hunger problems, where 3D LiDAR datasets of real-
world scenes are very limited and the class imbalance (also
called the long-tail) problem is one of the key issues. Class
imbalance is a common problem in machine learning and
has been extensively studied [10], which means that the
model could not be sufficiently learned for classes with a few
samples. The class imbalance problem is even more severe
for 3D LiDAR datasets due to the data acquisition method
and the proportion of scene objects acquired in the real world.
Although some studies have addressed alleviating the influence
of a class imbalance during model training [11], there has
been no rigorous study pertaining to the following question:
How does the class imbalance problem affect 3DSS models’
performance?

Out-of-distribution (OOD) data are another key issue when
deploying an AI system in the real world [8], [12]. The
problem is very severe for safety-critical applications such
as autonomous driving, where some of the categories are
unseen or rare in the datasets but need to be handled in the
system [13]. OOD detection has also been studied as a general
problem in machine learning [14]. However, the task is more
difficult when 3DSS is faced with the dual challenges from
class imbalances and OOD data, where the model could show
a high confidence for wrong predictions [15] on either the
object’s semantic class or the judgment of its in-distribution
(ID) or OOD. Compared with the bulk of efforts for improving
3DSS and OOD detection accuracies, far less attention is paid
to understanding when the agent is uncertain. With an intent
towards real-world deployment, it is important to ask: Can
the model be aware of its unsureness? Can the model detect
whether the category prediction is correct or not? Can the
model detect whether the input sample is ID or OOD?
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Fig. 1. A brief interpretation of the challenges of 3D semantic segmentation:
The class imbalance problem and the existence of OOD data. We will explore
how the class imbalance problem affects 3DSS performance and whether the
model can detect the category prediction correctness, ID or OOD. (3DSS: 3D
semantic segmentation, ID: in-distribution, OOD: out-of-distribution.)

Fig. 1 illustrates the key issues addressed in this research.
With a focus on a deeper understanding of the challenges
3DSS models face with class imbalance and OOD data, two
experiments are conducted to seek answers to the above
questions. Experiment 1 studies 3DSS models’ performance
on a class-imbalanced dataset SemanticKITTI [16], where four
3DSS models, PointNet++ [17], Cylinder3D [18], RandLA-
Net [19], and SqueezeSegV3 [20] are used and represent the
popular and state-of-the-art models in the literature. Experi-
ment 2 studies whether the model is aware of its unsureness
when facing class imbalances and OOD data. Considering
people and rider as OOD, the data from SemanticPOSS [21]
are augmented to SemanticKITTI [16], and a new dataset
AugKITTI is developed. Softmax confidence [12], data uncer-
tainty and model uncertainty [22], [23], ODIN [24] and Maha-
lanobis distance [25] are used as the trust scores to predict
whether the classification result is correct or wrong, or whether
the data are ID or OOD. To the best of our knowledge, this
is the first work to provide an in-depth analysis of how class
imbalance and OOD data affect 3DSS model performances
with insightful analyses and discussions.

Experimental results show that although the scale of the
training data is a key factor, model performance could be
greatly affected by intraclass diversity and interclass ambi-
guity. Some hard classes are found, that even with large
training samples, have difficulty achieving a high classifica-
tion accuracy or are easily confused with others. Facing the
dual challenges of class imbalance and OOD, the model has
difficulty predicting whether the classification result is correct
or wrong or whether the data is ID or OOD. With the current
trust scoring methods, a low trust score could be yielded by
either OOD or ID for a wrong classification result, whereas a
high trust score could also be given by an insufficiently trained
model on wrong predictions.

The main research contributions of this work are as follows:
1) Experimental studies with both a quantitative analy-

sis with cross-correlating metrics and a visualization

analysis of the feature space are conducted to gain a
deeper understanding of the performance of the state-
of-the-art 3DSS models processing class imbalanced and
OOD data, which is crucial for real-world deployments.

2) A 3D LiDAR dataset augmentation method is developed.
SemanticPOSS has rich data on dynamic objects, while
SemanticKITTI describes mostly static scenes. A new
dataset is generated by augmenting the data for the
dynamic objects of SemanticPOSS to SemanticKITTI,
which reduces dataset bias. Additionally, more realistic
datasets for OOD studies are generated by exploiting the
bias of the existing datasets.

3) New metrics are proposed to address the class imbal-
ance issue in evaluating model performance, and we
demonstrate that the traditional metrics are not sufficient
and that the new metrics are required for appropriately
evaluating 3DSS and OOD detection performance in
cases where the class models are not sufficiently learnt.

4) We engage in an insightful discussion of the key issues
to better understand the challenges of class imbalance
and OOD data for the 3DSS task. We highlight potential
topics for future works to improve the agent’s awareness
of the correctness or wrongness of the results and
whether the data is ID or OOD.

The structure of this paper is as follows. Section II reviews
the existing research for 3DSS models, class imbalance and
the trust scores used for failure detection and OOD detection.
Section III introduces the datasets and 3DSS models used
for our experiments. Section IV provides an analysis of
Experiment 1, which evaluates the performances of the 3D
semantic segmentation models trained on a class-imbalanced
dataset. Section V provides an analysis of Experiment 2 to
explore the performances of the trust scores applied to class-
imbalanced datasets, which is followed by a discussion on
future topics and potential solutions in Section VI.

II. RELATED WORK

A. 3D Semantic Segmentation Models

3DSS has been extensively studied in the literature to
gain a precise understanding of complex scenarios, such as
autonomous driving and robotics applications. In recent years,
great progress has been made in methods using deep learning
techniques [7], [9], of which much of the pioneering work
can be traced back to PointNet [26] and PointNet++ [17],
which provides the base network architectures for 3DSS.
3D data can be represented in different formats. Based on
these formats, 3DSS models scaled up to DNN models are
generally divided into point-based, image-based and voxel-
based methods [9]. Point-based methods take raw point clouds
as input and output point wise labels. These types of methods,
such as [27] and [28] [19] introduce special computation
modules for local feature aggregation of 3D point clouds.
Voxel-based methods [29] [18], [30] partition 3D space into a
number of voxels to convert the point clouds into a structured
data format and then apply an encoder-decoder architecture
for feature extraction. In addition, image-based methods [31],
[32] [20] project point clouds into 2D images and apply
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2D semantic segmentation models to predict semantic labels.
In the following experiments, we choose PointNet++ [17] to
represent the earlier pioneering models and Cylinder3D [18],
RandLA-Net [19], SqueezeSegV3 [20] to represent the state-
of-the-art models.

B. Class Imbalance Problem

Class imbalance reflects that some specific classes have far
fewer samples in the training data than others, limiting models’
performance for these small classes. It is a common problem in
training deep learning models for real-world applications and
has been studied extensively in the literature [33], [34]. Many
researchers have focused on analysing the imbalanced model
performance caused by an imbalanced training data size [10],
[35], [36], and methods such as data resampling [37], [38] or
loss reweighting [39], [40] have been developed to alleviate
the problem. These methods have also been used to address
the class imbalance problem for 3DSS models [41].

As discussed in [9], the number and physical size of each
object class vary in real-world scenarios. Therefore, in 3D
LiDAR datasets, road, building and plants make up a large
proportion of the data, whereas people and rider are rare and
thus difficult to model. Furthermore, in 3D LiDAR sensing, the
point density of the objects closer to the sensor is much higher
than that of the objects farther away, which aggravates the
class imbalance problem in 3D LiDAR datasets. Annotating
the 3D LiDAR dataset is the result of a trade-off between
labour cost and data size. Semantic categories cannot be
defined in too much detail, thereby reducing the difficulty
of manual annotation and ensuring that the amount of data
in each category can meet the needs of model training. For
this reason, some objects have the same semantic labels but
different morphological shapes, while some objects are similar
in data but have different semantics definitions. Therefore,
in the current 3D LiDAR dataset, classes are imbalanced not
only in terms of their data size but also in terms of their
heterogeneous properties, a scenario that has not been studied
in the literature.

C. OOD and the Open-World Learning Problem

Learning models for autonomous driving and robotics appli-
cations need to address the open-world problem [42], which
requires the models to deal with both the seen (ID) and unseen
(OOD) objects in the training datasets. OOD detectors [14]
have been developed as an auxiliary module combined with
the main task model for this purpose. Several mainstream
methods for OOD detection have been developed. The meth-
ods are broadly divided into two groups based on whether
they need an additional dataset that contains OOD examples.
Outlier Exposure methods [43], [44] use an auxiliary dataset
to represent OOD data when training models to teach the
model better representations for OOD detection. However,
for many applications, it is not possible to predefine OOD
data, making these approaches unsuitable. Reconstruction
methods [45], [46] learn to map the training data to the
hypersphere of the feature space and maps the OOD data
outside the hypersphere. However, the unseen OODs could be

Fig. 2. Flow of 3DSS with OOD data. (3DSS: 3D Semantic Segmentation).

very diverse, and guaranteeing them outside the hypersphere
remains an open issue. Trust scoring methods are the most
popular methods and are studied in this research. They utilize
a trust score metric to assess the reliability of the main task
model’s results and classifies the ID/OOD by thresholding the
scores. Many trust score metrics have been developed in the
literature [12], [24] [23], [25] [47], which will be detailed in
the next subsection. However, in this type of approach, OOD
detection is not an independent task, and the performance is
strongly related to the capabilities of the main task model. Can
OOD be detected by trust scoring the results of a 3DSS model
that is trained on class imbalanced data? Research is needed.

D. Trust Scores

Knowing when a deep model’s result is trustful and when
the model is uncertain is of great importance in many safety-
critical applications. To this end, many trust score metrics have
been developed, such as Softmax confidence [12], ODIN [24],
Mahalanobis distance (MD) [25], uncertainty [23] based on
Monte Carlo dropout [48] and deep ensemble [47]. By thresh-
olding these trust scores, OOD data [12], [24] [25] or model
failures [49], [50] are detected.

In the literature, there are no universally recognized names
for trust scores or for the thresholding methods on the trust
scores. We borrow the word trust score from [49], and we
name trust scoring for the group of threshold methods on trust
scores. In Experiment 2 of the paper, we sequentially con-
catenate trust scoring with 3DSS to analyse the performance
of the above trust scores on three tasks, namely, detecting
ID/OOD, correct/wrong without OOD and correct/wrong with
OOD. The focus is to understand the challenges when facing
class imbalanced and OOD data.

III. METHODOLOGY

In this section, we introduce the flow of 3D semantic seg-
mentation, datasets and the methods used for our experiments.

A typical 3DSS model takes 3D point clouds x as input,
passes them to an end-to-end 3DSS model f , and outputs
pointwise semantic labels y, as shown in Fig. 2. The 3DSS
model requires a trust score g to judge whether the category
prediction is reliable. The trust score function g takes the
output probability vector or the feature vector given by model
f as input and outputs the judgment z. In our experiments,
we focus on exploring the different performances using
different 3DSS models f and trust scores g.
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Fig. 3. The process to generate test frames by combining scenes from SemanticKITTI and people, rider instances from SemanticPOSS.

Fig. 4. Schematic diagram of the process to interpolate points on target
LiDAR frames.

A. 3D Semantic Segmentation Models

We use four baseline models in our experiment,
PointNet++ [17], RandLA-Net [19], Cylinder3D [18], and
SqueezeSegV3 [20].

PointNet++ is a pioneering model in the field of deep
neural networks used for 3D point cloud processing. We take
PointNet++ as a representative traditional 3DSS model in our
experiment.

RandLA-Net, Cylinder3D, and SqueezeSegV3 are recently
proposed state-of-the-art methods for 3DSS tasks using differ-
ent formats of input data. RandLA-Net is a point-based 3DSS
model and uses random point sampling instead of a more
complex point selection approach to reduce the computation
and memory cost. Cylinder3D is a voxel-based 3DSS model
that uses a cylindrical partition instead of a common rect-
angular partition when performing voxelization and extracts
voxel features by a simplified PointNet. SqueezeSegV3 is an
image-based model which takes range-image as input, and use
spatially adaptive convolution (SAC) to dynamically adapt the
filters to process different positions of the image. We take the
three deep networks as representative state-of-the-art 3DSS
models in our experiment.

B. Trust Scores

The trust scoring approach uses a specific score g(x) to
judge whether input x is an OOD sample or the category

prediction is wrong. If given a threshold value δ, the output
of the trust scoring process z is given by:

z =

{
0, if g(x) ≤ δ

1, if g(x) > δ
(1)

We use several widely used scores for failure detection and
OOD detection in our experiment, Softmax confidence [12],
uncertainty [23], ODIN [24] and MD [25].

The Softmax confidence con f (x) is the output of the
Softmax layer and is the most common score used to detect
failure and OOD, and is given by:

con f (x) = max
c

pc(x) = max
c

exp( fc(x))∑C
i=1 exp( fi (x))

(2)

where pc(x) is the prediction probability of class c, fc(x) is
the last layer output of the network of class c and C is the
number of classes.

Uncertainty is a score to evaluate how certain the model
predictions are, which can also be used for failure and OOD
detection. In addition, uncertainty can be divided into data
uncertainty du(x) and model uncertainty mu(x) to distinguish
between the uncertainty caused by data ambiguity and model
disagreement. Data uncertainty can be quantized by prediction
entropy, and model uncertainty can be quantized by mutual
information [23], which are given by:

du(x) = EM [H( p(x))] = −EM [

∑C

c=1
pi (x) log pc(x)]

mu(x) = H(EM [ p(x)]) − EM [H( p(x))] (3)

where H is the prediction entropy and EM is the expectation
for all the models distributed in the model space, which can be
estimated by Monte Carlo dropout [48] or deep ensemble [47].

ODIN [24] applies temperature scaling to the Softmax
confidence using a temperature scaling parameter T :

temp(x) = max
c

exp( fc(x)/T )∑C
i=1 exp( fi (x)/T )

(4)
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Mahalanobis distance [25] is a distance measure in feature
space:

md(x) = min
c

( f (x) − µc)
T 6−1( f (x) − µc) (5)

where µc is the mean vector of class c and 6 is the covariance
matrix of the training samples in feature space.

In our experiment, we try to explore the failure and OOD
detection performance of these scores for the 3DSS models
trained on the class-imbalanced datasets.

C. Dataset Augmentation

Due to the difficulty in manual point-level labelling of 3D
LiDAR point clouds, there is a lack of large-scale 3D LiDAR
datasets used for 3DSS tasks [9]. Driving scene point clouds
collected by vehicle-mounted LiDAR such as nuScenes [51],
SemanticKITTI [16], and SemanticPOSS [21] are commonly
used for understanding driving scenes. However, the above
widely used public 3D datasets have a large difference in the
data size of the different classes. Fig. 7 shows the data size of
the popular and largest 3D LiDAR dataset, SemanticKITTI,
which reflects the class imbalance problem.

We use SemanticKITTI as a representative 3D dataset
in Experiment 1 to study how the class imbalance dataset
affects the 3DSS performance. However, there is no publicly
available dataset for a study of OOD in a 3DSS task. To find
a dataset for Experiment 2 on whether the model is aware of
its unsureness when facing class imbalanced and OOD data,
a dataset augmentation method is developed.

SemanticKITTI contains few samples of people and rider,
whereas SemanticPOSS describes scenes populated with these
dynamic objects, reflecting two completely different scenarios
and making it most feasible for us to use the two classes as
OOD. Meanwhile, for autonomous driving system, people and
rider are very critical to safety. Considering people and rider
as OOD, the frames of SemanticKITTI that have no people
and rider are extracted to compose a dataset SubKITTI for
training, while the remaining frames of SemanticKITTI are
augmented by the instances of people and rider of Semantic-
POSS to generate a new dataset AugKITTI for testing.1

Fig. 3 illustrates the flow of the dataset augmentation.
SemanticPOSS is used as an auxiliary dataset that provides
instances, while SemanticKITTI is a source dataset that pro-
vides LiDAR frames. An instance dataset is first generated
by assembling all the instances of SemanticPOSS. Here,
an instance is a 3D point cloud at the LiDAR sensor’s
coordinate system. Given a LiDAR frame k of SemanticKITTI,
an instance s is sampled, and the 3D point cloud is projected
to the LiDAR frame on their own coordinates. Augmentation
can only be conducted if the projected space is on the road
and not occupied by other objects.

Fig. 4 illustrates the procedure of augmenting an instance s
with LiDAR frame k. For each instance, a billboard mask is
generated describing a region of the projected 3D point cloud
on a 2D plane, with a triangle mesh 1 which is built using
Delaunay triangulation. Given LiDAR frame k and instance s,

1SubKITTI and AugKITTI are published at http://www.poss.pku.
edu.cn/augkitti.html

Fig. 5. Setup of Experiment 1: Evaluate the performances of 3DSS models
trained on a class-imbalanced dataset.

Fig. 6. Class definition for our experiments.

for any point pi of the LiDAR frame, if its beam intersects
the billboard mask and the intersection point lies inside a
triangle δi ∈ 1, then a new p′

i is estimated to replace pi .
The original object points of three vertexes of δi are retrieved,
their range distances are linear interpolated to estimate a new
range distance ri , thus p′

i = ri ·
pi

||pi ||
is estimated along the

same beam direction of pi .
It should be noted that p′

1, p′

2, and p′

3 in Fig. 4 are not
necessarily in the same plane, nor in the plane of the billboard
mask, because they are generated by interpolating the original
coordinates corresponding to the triangular mesh, rather than
the projected coordinates.

Although the data augmentation method is motivated by
the OOD study in this research, it is a general method for
generating augmented 3D point clouds, which can also be
used to reduce the dataset bias between different 3D datasets.
In addition, the proposed method can be applied to datasets
with different sensor characteristics, e.g., transferring instances
collected by a 32-line LiDAR to a 64-line LiDAR dataset.
In this way, we create an augmented dataset with a certain
number of people, rider samples and other classes have the
same distribution as the training set. The data size of each
class of AugKITTI is shown in Table II.

IV. PERFORMANCE OF 3DSS FACING CLASS
IMBALANCED DATA

A. Experimental Setup

In this section, we evaluate the performances of 3D semantic
segmentation models trained on a class-imbalanced dataset,
as shown in Fig. 5. We train and test models on the
SemanticKITTI dataset, and some morphologically similar
classes are merged in the experiment, as shown in Fig. 6.
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TABLE I
DATA SIZE OF EACH CLASS ON SEMANTICKITTI FOR TRAINING AND TESTING IN OUR EXPERIMENTS, AND TRAINING WEIGHTS OF EACH CLASS

There are a total of 11 classes for model training, and we
simply use the first two letters of class names to denote these
classes. The data size of each class is shown in Table I. For
a qualitative analysis, we divided the 11 classes into large,
middle, and small classes according to the order of magnitude
of each class data size on the training set.

Four 3D semantic segmentation models PointNet++,
SqueezeSegV3, RandLA-Net and Cylinder3D are used in the
experiment, and all the models are trained for 32 epochs using
a weighted cross-entropy loss given by:

L = −
1
N

K∑
c=0

∑
yi =c

wchT
i log pi (6)

where N is the total number of samples used for the loss
calculation, K is the number of classes, wc is the weight of
class c, yi is the ground truth of sample i , hi is the ground truth
one-hot vector of sample i , and pi is the output probability
of sample i . We use class weights calculated by [40], which
are given by:

wc =
1 − β

1 − βNc
(7)

where Nc is the data size of class c and β = 0.9 when training
models. The weights of classes are shown in the last line of
Table I. The Adam optimizer with a learning rate of 0.001 is
used for network optimization.

B. Experimental Results

Here, the traditional evaluation metrics of intersection over
union (IoU), precision (Pre) and recall (Rec) are used to
analyse and evaluate the model performance of each semantic
category. Hereinafter, we denote |yGT = c| as the number of
points whose ground truth (GT) labels are equal to class c and
|yP D = c| as the number of points predicted (PD) to class c.
The IoU, Pre and Rec of class c are estimated as follows:

IoU(c) =
|yGT = c ∧ yP D = c|

|yGT = c| + |yP D = c| − |yGT = c ∧ yP D = c|
(8)

Pre(c) =
|yGT = c ∧ yP D = c|

|yP D = c|
(9)

Rec(c) =
|yGT = c ∧ yP D = c|

|yGT = c|
(10)

The model performance of each class and the number of
data points in training are shown in Fig. 7(a). The state-of-
the-art methods significantly improve the overall performance
of the model compared to the earlier method PointNet++.
From Fig. 7(b), it can be found that the classes can be divided

Fig. 7. (a) Training data size and model performances on SemanticKITTI
dataset. (b) Scatter plot of Iou of PointNet++ and Cylinder3D, which divides
the classes into three groups.

into three groups. The classes in the first group demonstrate
excellent performance in all the models, which are marked as
simple classes, and interestingly, they are all the large-scale
classes.

The classes in the second group achieve great perfor-
mance improvements in the state-of-the-art models, which are
marked as simple-with-effort classes. In this group, people
and rider are small-scale classes, pole and trunk are middle-
scale classes, and car is a large-scale class. Interestingly, these
classes are objects that have regular sizes and shapes. This
may be the reason why they outperform other classes with
more data samples.

The classes in the third group are hard ones, which demon-
strate unsatisfactory performances in all models, and are
marked as hard classes. This group contains the small-scale
classes bike and sign, and the large-scale class fence. The
models of these classes are hard to be learnt no matter on
a small or large set of training data, and fewer performance
improvements are found in the models.
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Fig. 8. Training loss curve of each class using (a) PointNet++, (b) RandLA-Net, (c) Cylinder3D. And test loss curve of each class using (d) PointNet++,
(e) RandLA-Net, (f) Cylinder3D. The abbreviations of class names are defined in Table I.

We also find the influence of class imbalance reflected by
the loss curve. We visualize the cross-entropy loss curve of
class c given by:

L(c) = −
1

Nc

∑
yi =c

hT
i log pi (11)

where Nc is the data size of class c, yi is the ground truth of
sample i , hi is the ground truth one-hot vector of sample i and
pi is the output probability of sample i . As shown in Fig. 8,
we discriminate between semantic classes by the colour and
different data scales of the classes by line type. We find that the
training loss curve of the simple classes converges faster and
lower than the hard classes. In the test loss curves, we observe
that simple classes retain a low and smooth loss value, whereas
the curves of simple-with-effort and hard classes are relatively
high and zigzag. Compared with the test loss of PointNet++,
the loss of simple-with-effort classes people, rider, car are
evidently reduced when using RandLA-Net or Cylinder3D,
whereas the loss of hard classes are not significantly reduced,
indicating the learning difficulty of these classes.

Based on the above results and observations, we can find
that, in addition to the size of the training data, there are other
factors that may have a significant impact on the performance
of the model, which may be in terms of the basic properties of
each semantic category. These basic properties are identified as
the confusion property in Section IV-C, and further identified
as the intraclass diversity and interclass ambiguity properties
in Section IV-D.

C. Confusion Analysis

Fig. 9 shows the confusion matrixes of the three models.
Each value p(r, c) on row r and column c of the confusion

matrix is estimated by:

p(r, c) =
|yGT = r ∧ yP D = c|

|yGT = r |
(12)

which indicates the ratio of points whose ground truth labels
are r but classified to c. Therefore, the diagonal values p(c, c)
equal the recall for class c, i.e., Rec(c) = p(c, c). In addition
to the diagonal values, the values in each row r compose a
vector of wrong prediction ratios (WPR) that describes how
data points of the ground truth class r are misclassified to other
classes c ̸= r . Similarly, the values in each column c compose
a vector of be confused ratio (BCR) that describes how data
points of other ground truth class r ̸= c are misclassified to
the predictive class c.

With the confusion matrix of Cylinder3D in Fig. 9(c),
the WPR and BCR vectors are generated and shown in
Fig. 10(a-b). The class plants demonstrates excellent perfor-
mance on IoU, Pre and Rec in all models in Fig. 7, and
its data points have a very small part misclassified to other
classes, as shown in Fig. 10(a). However, interestingly, the
data points of the other classes have a large ratio predicted to
plants by mistake, meaning that plants is a class that is easily
confused. This tendency for imprecision has been omitted in
the literature. To this end, this research proposes a new metric
called weighted precision (wPre) by reshaping the precision
metric as follows.

Let ∼ Pre = 1 − Pre be the negation of precision; we have:

∼ Pre(c) =

∑
r ̸=c |yGT = r ∧ yP D = c|∑

r |yGT = r ∧ yP D = c|
(13)

For a small-scale class r , even the wrong predictions occupy
large proportions in its ground truth set, and the absolute point
number is small compared to larger classes; hence, it has little
impact in the evaluation. To balance the impacts from the
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8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 9. Confusion matrix of (a) PointNet++, (b) RandLA-Net, (c) Cylinder3D. The labels of each row represent the ground truth, and the labels of
each column represent the prediction results. Recall (Rec) is the diagonal and weighted precision (wPre) is the diagonal dividing the sum of each column.
(GT: ground truth, PD: predictions, and the abbreviations of class names are defined in Table I.)

Fig. 10. (a) Wrong prediction to others classes using Cylinder3D. (b) Wrong prediction from other classes using Cylinder3D. (c) wPre vs. IoU scatter plot
using Cylinder3D training and testing on SemanticKITTI. (d) Pre vs. IoU scatter plot using Cylinder3D training and testing on SemanticKITTI. (GT: ground
truth, PD: predictions, and the abbreviations of class names are defined in Table I.)

classes of different scales, a new metric is developed by a
weighting on the data size of the ground truth class.

∼ wPre(c) =

∑
r ̸=c |yGT = r ∧ yP D = c|/|yGT = r |∑

r |yGT = r ∧ yP D = c|/|yGT = r |

=

∑
r ̸=c p(r, c)∑

r p(r, c)
=

∑
r ̸=c

1
ηc

p(r, c) (14)

where ηc =
∑

r p(r, c) is a factor to normalize each column
vector of the confusion matrix to 1, and ∼ wPre(c) is the
sum of the normalized non-diagonal values in column c,
which describes how easily class c can be confused. Similarly,
we have:

wPre(c) = 1 − [∼ wPre(c)] =
1
ηc

p(c, c) (15)

By cross correlating IoU with the weighted precision met-
rics wPre of each class in Fig. 10(c), three groups are shown
in these classes, high-accuracy and hard to be confused, high-
accuracy but easy to be confused, and low-accuracy but hard
to be confused. For comparison, Fig. 10(d) cross correlates
IoU with the traditional precision metrics Pre, which failed to
reflect such a property.

D. Feature Analysis

Model performances are relevant to the feature description
of models. Some experimental results using Cylinder3D are

notable; large class plants is easier to be confused compared
with other large classes, while small classes people and rider
have a relatively satisfactory performance. Therefore, we visu-
alize the last layer features using t-distributed stochastic
neighbor embedding (T-SNE) to analyse feature distribution,
as shown in Fig. 11.

We find that the proposed wPre metric can appropriately
evaluate the feature confusion in the presence of the class
imbalance. As mentioned in the previous sections, the IoU,
Pre and Rec of class plants are all high. However, the
features of plants in Fig. 11 are severely confused with other
class features, which is not reflected by traditional metrics.
In contrast, the wPre of plants is very low because of the
reweighting of the precision metric by class data size, which
shows a better estimation of feature confusion.

In Fig. 11, confusion of the different classes can be easily
observed; we find that the points of large classes road, car
distribute far away from other classes, while fence, plants are
confused. This result can explain the performance differences
among classes in our experiment and the influence of class
imbalance. The feature confusion of the different classes also
reflects the classification confusion in Fig. 10(a-b).

Two noticeable phenomena, intraclass diversity and inter-
class ambiguity, are reflected in Fig. 11. Some classes have
various features, causing high intraclass diversity and learning
difficulty. A prominent example is the feature distribution of
plants in Fig. 11, where we find that feature points of plants
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Fig. 11. T-SNE plot of 200 random sampled points from SemanticKITTI test frames using Cylinder3D. Some classes show intraclass diversity such as
plants. And some classes are confused due to the interclass ambiguity, such as trunk and pole, people and rider.

can be divided into two parts. The right-up part corresponds
to the points of the crown, and the other part corresponds to
the roadside shrub. The morphological features of plants can
be extremely varied, which leads to a high intraclass diversity,
and other classes that are not learned sufficiently are more
likely to be misclassified to plants. By contrast, classes such
as road, people, and rider have relatively consistent features,
making them easier to learn.

On the other hand, some of the different classes have similar
features, causing interclass ambiguity and feature confusion.
As shown in the right part of Fig. 11, two feature points
of trunk and pole are close in feature space due to their
similar columnar features. Similarly, people and rider show
very similar geometrical features and are close in the feature
space. The reason for confusion is the interclass ambiguity,
namely, the feature similarity of these classes.

From the feature space analysis, we can give a systematic
summary. Some classes have various features, while some
different classes have similar features, causing these samples
to be misclassified or hard to distinguish from other classes.
The intraclass diversity and interclass ambiguity determine the
learning difficulty of the classes and greatly affects model
performance.

V. PERFORMANCE OF TRUST SCORES FACING CLASS
IMBALANCED AND OOD DATA

A. Experimental Setup

In this section, we evaluate the failure and OOD detection
performances of trust scores using 3DSS models trained on
class-imbalanced datasets, as shown in Fig. 12. We train
models on the SubKITTI dataset and test models on the
AugKITTI dataset. The data size of each class is shown in
Table II. Compared with Experiment 1, people and rider are
considered to be OOD classes.

Four 3D semantic segmentation models PointNet++,
SqueezeSegV3, RandLA-Net, and Cylinder3D are used in the
experiment, and all the models are trained for 32 epochs using
the weighted cross-entropy loss given by Equation (6) and the

Adam optimizer with a learning rate of 0.001. In addition,
we use the class weights given by Equation (7) with β =

0.9 when training the models, which are shown in the last
line of Table II.

Five trust scoring approaches, Softmax confidence, data
uncertainty, model uncertainty, ODIN and MD, are used in
the experiment. For data uncertainty and model uncertainty,
we use the Monte Carlo dropout [48] with the number of
forward passes M = 5 and the dropout probability p =

0.25 as a commonly used setup [52]. For ODIN, we use the
temperature parameter T = 1000.

B. Experimental Result

Given a 3DSS model f and a trust score g, a g(x) ∈ [0, 1]

can be estimated for each data point x based on the output
of f . Ideally, a high g(x) indicates that the model f is
confident in its results, while a lower value indicates that the
model is uncertain about its results. Discriminating whether
the predicted semantic class is correct or wrong, or whether
the data are ID or OOD is a binary decision, which has usually
been made by thresholding g(x) using formula (1).

Before examining the experimental results, let us first define
three class sets: ID/correct (AI D.co), ID/wrong (AI D.wr ) and
OOD (AO O D). AI D.co and AI D.wr contain both of the ID
classes that appeared in the training data. For each predicted
class cP D , the former has a single class AI D.co = {cGT = cP D },
while the latter are the rest AI D.wr = {cGT ̸= cP D }. AO O D
are OOD classes that are not known in training and thus are
not included in the predicted label set. In this experiment, the
OOD classes are rider and people.

This study addresses three tasks that differ only in the
definition of their true and false class sets. Task 1 - I/O,
discriminating whether the data are ID or OOD. For this task,
we define the true class set as AI/O

= AI D.co ∪ AI D.wr
and the false class set as ĀI/O

= AO O D . Task2 - C/W and
Task3 - C/W with OOD, discriminating whether the predicted
semantic class is correct or wrong, where the two tasks vary in
whether OOD are addressed. Both tasks share the same true
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TABLE II
DATA SIZE OF EACH CLASS ON SUBKITTI AND AUGKITTI, AND TRAINING WEIGHTS OF EACH CLASS

Fig. 12. Setup of Experiment 2: Evaluate the performances of trust scores
using 3DSS models trained on class-imbalanced datasets. (I/O: ID/OOD. C/W:
Correct/Wrong. SubKITTI: SemanticKITTI without OOD data. AugKITTI:
SemanticKITTI with augmented OOD data. OOD data: people, rider.)

class set that is AC/W
= AI D.co. They have different false

class sets, which are ĀC/W
= AI D.wr and ĀC/Wwi thO O D

=

AI D.wr ∪AO O D for Task 2 and Task 3, respectively.
Here, the traditional evaluation metric of the area under the

receiver operating characteristic curve (AUROC) is used to
analyse and evaluate the trust scoring performance. A receiver
operating characteristic (ROC) curve is first plotted with the
true positive ratio (TPR) and false positive ratio (FPR) for
the vertical and horizontal axes, and the area under the ROC
curve is estimated to evaluate the performance. For a predicted
class c and a given threshold δ, TPR and FPR are estimated
as follows:

TPR(c, δ) =
TP(c, δ)

TP(c, δ) + FN(c, δ)
(16)

FPR(c, δ) =
FP(c, δ)

FP(c, δ) + TN(c, δ)
(17)

Given the true and false class sets, A∗ and Ā∗, where ∗

represents the task, we have:

TP(c, δ) =

∑
r∈A∗

|yGT = r ∧ yP D = c ∧ g(x) > δ| (18)

TN(c, δ) =

∑
r∈Ā∗

|yGT = r ∧ yP D = c ∧ g(x) ≤ δ| (19)

FP(c, δ) =

∑
r∈Ā∗

|yGT = r ∧ yP D = c ∧ g(x) > δ| (20)

FN(c, δ) =

∑
r∈A∗

|yGT = r ∧ yP D = c ∧ g(x) ≤ δ| (21)

The AUROC of all 3DSS models f , and the trust scores g,
on three different tasks are plotted in Fig. 13. We discriminate
between the models by colour, trust scores by line type and
tasks by subfigures. It can be found that for each task, lines

of the same colour are cluttered, revealing that the model
performance is the dominant factor as compared to the trust
score methods.

For each model, all trust scoring methods demonstrate a
similar overall performance. The performance of PointNet++

for each class is related to data size to some extent, where
there are no data in sign and bike from PointNet++ because
none of the test points is predicted to be sign and bike by
PointNet++. The general tendency is that the larger the data
size, the higher the AUROC value, which means that OOD
detection also suffers from the class imbalance.

On the other hand, the state-of-the-art models, Squeeze-
SegV3, Cylinder3D and RandLA-Net, have greatly improved
the performance of all classes. However, the performance is
not equivalent. For example, sign and bike are both small
classes and have very poor performance on PointNet++.
Although sign presents superior performance on Cylinder3D,
the improvement of bike is limited, and the AUROC values on
all three tasks are unsatisfactory. This phenomenon suggests
that in these tasks, different properties of the classes may have
a greater impact on performance than the data size imbalances.
Some classes are hard because they are easily confused with
OOD data or other classes.

C. Confusion Analysis

In this section, we choose the results of Cylinder3d with the
Softmax confidence for further in-depth analysis as shown in
Fig. 15. We begin by examining the distribution of the g(x)

values of each predicted category.
1) Trust Score Distribution (TSD): Given a sequence of

monotonically increasing values {δ0, . . . , δi , . . . , δn} with δ0 =

0 and δn = 1, a measure is defined below:

q(r, c, δi ) =
|yGT = r ∧ yP D = c ∧ δi < g(x) ≤ δi+1|

|yGT = r |
(22)

The numerator of the right-hand term counts the number of
points whose ground truth label is r while classified to c with a
trust score g(x) ∈ (δi , δ j ]. In fact,

∑n−1
i q(r, c, δi ) = p(r, c).

Corresponding to the confusion matrix in Fig. 9, each
column vector of a predicted class c can be extended to a trust
score distribution (TSD) matrix, where each row r is for a
ground truth class, each column is for δi , each matrix value
is q(r, c, δi ), and the sum of row r is p(r, c). Taking PD =

plants as an example, a matrix is shown in Fig. 14(a) and
plotted in the mode of the stacked area chart in Fig. 14(b),
where horizontal bands of a TSD are ordered. From top to
bottom, they are sequentially the classes of AI D.co, AI D.wr
and AO O D . The TSD of each predicted class c is plotted
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Fig. 13. AUROC of different models and trust scores for (a) Task1 - I/O, (b) Task2 - C/W, (c) Task3 - C/W with OOD.

Fig. 14. (a) An example of a trust score distribution (TSD) matrix (×10−1) (b) An example of the TSD according to the matrix. From top to bottom, the
horizontal bands are sequentially the classes of AI D.co, AI D.wr and AO O D .

Fig. 15. TSD of 9 ID classes using Cylinder3D and Softmax confidence. Road and sign demonstrate perfect examples, whereas bike, plants, fence and
building demonstrate examples of the worst performance.

in Fig. 15. Each horizontal band of a TSD depicts an g(x)

distribution for a certain ground truth class r and predicted
class c with the area equal to p(r, c).

In Fig. 15, road and sign demonstrate perfect examples,
where the data predicted for these classes almost fall in the
top horizontal band, AI D.co data. The TSD of car looks
similar. However, there are many OOD data predicted as car,
which fall in the bottom horizontal bands, and some have
very high trust scores. The performance of trunk and pole

are not bad too, and they are almost AI D.co data, while their
trust scores span wider ranges. Bike, plants, fence and building
demonstrate examples of the worst performance, where many
AI D.co data have lower trust scores than those of AI D.wr and
AO O D . With such distributions, it is difficult to discriminate
between ID/OOD or correct/wrong by thresholding on the trust
scores.

2) Per-Class AUROC for Three Tasks: We extract the
results of Cylinder3d with a Softmax confidence in Fig. 16
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Fig. 16. (a) per-class AUROC of the three tasks. (b) per-class TPR with δ = 0.9 of the three tasks. (c) per-class FPR with δ = 0.9 of the three tasks.
Per-class AUROC and wPre for (d) Task1, (e) Task2, (f) Task2 vs Task3. The abbreviations of class names are defined in Table II.

and cross-correlate the per-class AUROC of the three tasks in
Fig. 16(a). The horizontal axis is for Task 1 - I/O, while the
vertical axis compares Task 2 - C/W and Task 3 - C/W with
OOD. Two dotted lines are manually drawn at AUROC=0.7 for
analysis. It can be found that for the data predicted as bike,
it is difficult to discriminate whether it is an ID or OOD.
Comparing its performance on Task 2 and Task 3, it is found
that bike is easily affected by OOD. In fact, the data of ID
class bike and OOD class rider have similar properties, which
makes them confusing. This phenomenon suggests that the
performance of OOD detection and the influence of OOD
data need to be addressed with the confusion properties of
the classes.

On the other hand, for those predicted as sign, it is difficult
to discriminate whether the predicted semantic class is correct
or wrong, no matter whether OOD exists. However, this result
contradicts what we discussed earlier, where sign demonstrates
perfect TSD examples. We further analyse the results below.

3) Threshold on Trust Scores: An ideal trust score should
provide a reliable prediction when it is high. Therefore, we are
also interested in how model performance is influenced by an
incorrect prediction and an OOD with high thresholding trust
scores δ. We analyse TPR and FPR with δ = 0.9 as the basis
of a trust score evaluation. Fig. 16(b) shows the TPR results.

Since Task 2 and Task 3 share the same true class set,
their per-class TPRs are the same, exhibiting a nearly linear
trend. Similar to the results of TSD, bike, fence and building
are the worst three performers, while road, car, pole and
sign are among the top groups. However, the FPR results in
Fig. 16(c) also contradict what we discussed earlier, where
bike, fence and building have very low FPRs for all three
tasks, whereas road and sign have high values. By examining
the formula (20), we found that some classes have very small
FP and TN, as exhibited in Fig. 15, and even a small FP could
yield a high FPR. This is the main reason for the contradictory
results in Fig. 16(a) and (c). If classes are highly imbalanced,
the metrics TPR and FPR may not properly and sufficiently

evaluate the model performance of each class, which shows
the need to combine them with a metric on precision.

4) Per-Class AUROC and wPre: By incorporating the trust
score, the wPre metrics in the previous section are extended
below to evaluate the reliability of a model prediction.

wPre(c, δ) =
wTP(c, δ)

wTP(c, δ) + wFP(c, δ)
. (23)

where

wTP(c, δ) =

∑
r∈A∗

|yGT = r ∧ yP D = c ∧ g(x) > δ|

|yGT = r |
(24)

wFP(c, δ) =

∑
r∈Ā∗

|yGT = r ∧ yP D = c ∧ g(x) > δ|

|yGT = r |
(25)

Cross correlating AUROC with wPre and δ = 0.9, we evalu-
ate the performance for Task 1, Task 2 and Task 2 vs Task 3 in
Fig. 16(d-f), respectively. We obtain the following findings.
For Task 1, car, plants and bike have poor precisions, and bike
has the worst performance in discriminating between ID and
OOD data due to the interclass ambiguity. For Task 2, plants
and fence have poor precisions, whereas sign has difficulty
in discriminating between correct or wrong predictions of the
semantic classes. In the case that OOD data exist in Task 3,
car, plants and bike are the most affected.

D. Feature Space Analysis

The validity of trust scores, namely, the failure detection
and OOD detection abilities, are also relevant to the feature
description of the models. We have found that bike, plants,
and fence are hard to distinguish from OOD classes in the
experimental results. Therefore, we visualize the last layer
features using T-SNE to compare the feature distribution of
OOD classes and ID classes, as shown in Fig. 17.

The OOD detection performance is affected by the feature
confusion between the predictive class and the OOD data.
Similar to Experiment 1, the feature distribution of classes
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Fig. 17. T-SNE plot of 200 random sampled points from AugKITTI using Cylinder3D. (a) Feature points of ID classes. (b) Feature points of car, sign, trunk,
pole, road and OOD classes. (c) Feature points of plants, fence, building, bike and OOD classes. The abbreviations of class names are defined in Table II.

also determines the OOD detection performance. As we define
people and rider as OOD classes, ID classes such as plants
and bike have feature confusion with OOD classes to a degree,
making it difficult to distinguish the OOD data. This result can
explain the ID/OOD AUROC differences in our experiment.

We also find that the proposed TSD analysis can appropri-
ately evaluate the feature confusion, failure and OOD detection
performances. As illustrated in Fig. 15, bike, plants, fence
and building demonstrate examples of the worst performance,
which corresponds to Fig. 17(c), where features of these
classes are easily confused with OOD classes. In contrast,
features of road, sign, pole are far away from the OOD classes,
whereas car is slightly confused with the OOD classes, which
also corresponds to the TSD analysis.

In addition, trust scores are not reliable for classes whose
features are confused with other classes. Using wPre with
δ=0.9, as shown in Fig. 16(d-f), we find that plants have poor
precisions in all three tasks, which means that the reliability
of plants prediction is limited even though it gives a high
confidence value. The features of plants are severely confused
with other classes in Fig. 17(a)(c), which explains the results.
In addition, if features are confused with OOD classes, they
will be influenced by OOD data more easily. As our analysis
shows in Fig. 16(f), car, plants and bike are most affected by
OOD, while their features are also confused with OOD classes
to different degrees.

From the feature space analysis, we can give a systematic
summary. The validity of trust scores is also greatly affected
by feature confusion among classes, which makes failure
detection and OOD detection more challenging.

VI. DISCUSSION

A. The Class Imbalance Problem

Class imbalance is a general problem in the deep learning
domain. Real-world scenes are occupied with various objects
in different proportions. Although people, rider, bike, sign,
etc. occupy small proportions in the scenes, and subsequently
with 3D LiDAR data, precise perception of these objects
is essential for an autonomous agent to traverse safely and
smoothly in populated environments. However, due to the
small number of data samples of these categories, their models
could be under-trained, and their classification failure could
be underestimated. Although many methods [10], [33] have

Fig. 18. Examples of intraclass diversity and interclass ambiguity.

been developed, the class imbalance problem is far from
being solved in 3DSS tasks. Improving model performance on
small classes needs more attention, and semi-supervised learn-
ing [53], few-shot learning [54], and zero-shot learning [55]
for 3DSS could be the future research directions.

There is more than one aspect of class imbalance. Not
only data size but also basic properties of each semantic
class will affect the model performance, which determines the
difficulty of learning. Notice that the state-of-the-art model is
less affected by data size in our experiments. Specifically, this
difference is mainly composed of the following reasons. First,
the enhanced feature extraction ability brought by the model
structure. Second, the targeted processing of small classes by
the loss function, such as focal loss [39], lovasz loss [56],
etc.. However, model performance of some classes is hard to
improve such as plants and fence due to their complicated
characteristics. These hard classes bring a huge challenge for
the 3DSS models, and we will discuss it further in the next
subsection.

B. Intraclass Diversity and Interclass Ambiguity

Experimental results show that even for some classes having
a large number of training samples, their model performance
is unpleasant, such as fence and plants. Through feature space
analysis, it is found that intraclass diversity and interclass
ambiguity are among the main reasons, which reveals that
there are large semantic and data gaps in the data.

As illustrated in Fig. 18, although some objects belong to
the same semantic class, they may have various shapes, e.g.,
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trunk with straight and forked branches, plants with nature
and trimmed crowns. In these cases, the semantic category
y is the same, whereas the sensor data x are very different,
which is called the semantic gap. Conversely, some objects
are of different semantic categories, whereas due to partial
observation, occlusion and/or low-resolution point sampling,
their data could present similar features, such as people and
rider, pole and straight trunk with its crown occluded. In these
cases, the semantic category y are different, whereas sensor
data x are very similar, which is called the data gap.

Semantic gap and data gap make some classes difficult
to learn. However, the learning ability of model and the
category definition are a very coupled relationship. The abil-
ity of the model is the key to whether it can distinguish
between classes, and whether the categories themselves are
easy to distinguish will also affect the model performance.
Therefore, on one hand, improving model learning ability on
imperfect dataset such as robust deep learning [57], meta
learning [58] can alleviate the problem. On the other hand,
more reasonable category definition could help to alleviate
the intra-class diversity and inter-class ambiguity problem.
For example, the lack of detailed class definitions may be an
important cause of intra-class diversity and lead to inter-class
ambiguity. Recently, some works [59], [60] have paid attention
to refine the labeling of ImageNet datasets. These works show
that reasonable category definitions can help model learning.
However, this problem has not yet been explored in 3DSS
tasks, and unsupervised category discovery [61] may be a
potential solution that needs to be further investigated in the
future.

C. Can 3DSS Results Be Trusted

For safety-critical applications such as autonomous driving,
when compared to improving the overall statistical accuracy of
3DSS and/or OOD detection, it is more important to under-
stand whether the current prediction results are trustworthy.
Many metrics have been developed for such a purpose, where
Softmax confidence, uncertainty, ODIN and Mahalanobis dis-
tance are among the most popular metrics, as discussed in
earlier sections. These metrics use a 3DSS model’s output at
the intermediate or final layers and estimates a trust score on
whether the prediction of semantic class is correct or whether
it is an ID/OOD data. Many methods have been developed to
find or calibrate metrics, such that a high score reflects that the
model is confident of the result, whereas a low score shows
that the model is unsure and thus could be either a wrong
prediction on the semantic class or an unseen object in the
training data (OOD).

However, the performance of such trust scoring methods
depends on both the metrics and the 3DSS model. Faced
with the dual challenges of class imbalance and OOD data,
the performance of a 3DSS model on each class could be
much different, including both well-learnt and poorly-learnt
classes. For the poorly-learnt classes, high trust scores could
also be given on those wrong classified ID categories and
OOD, making it hard to capture a correct understanding of the
trustworthiness of the 3DSS results. A meticulous design of the

metrics that addresses the 3DSS model’s various performances
on each semantic class is required, which may lead to a
more pinpointed understanding of whether 3DSS results can
be trusted. More studies are needed in the future.

VII. CONCLUSION AND FUTURE WORK

This work aims to explore the relationship among class
imbalance, 3DSS model performance, failure and the OOD
detection ability for 3D semantic segmentation tasks and to
analyse the underlying reasons for these performances. For
these purposes, we conduct two experiments and conduct both
a confusion and feature analysis of each class. For experiments
and analysis, we introduce a data augmentation method for
the 3D LiDAR dataset, create the AugKITTI dataset based
on SemanticKITTI and SemanticPOSS, and propose the wPre
metric and a TSD for confusion analysis. The major findings
from the above experimental studies are as follows:

1) The classes are imbalanced not only in terms of their
data size but also in terms of the basic properties of each
semantic category, in which confusion among different
semantic categories could be another key factor that
greatly affects the model performance.

2) The intraclass diversity and interclass ambiguity make
class learning difficult and greatly limits model perfor-
mance, causing the semantic and data gap challenge.

3) Trust scores are unreliable for classes whose features are
confused with other classes. For these classes, high trust
scores could also be given on those wrongly classified
ID classes and OOD, making the 3DSS predictions
unreliable and creating a challenge of judging the 3DSS
results to be trustful.

For real-world 3D semantic segmentation with complex
scenes, deep models are required to address the class imbal-
ance problem, have an awareness when the model is uncertain
and detect unseen objects. This work examines the perfor-
mance of representative 3DSS models, and the results show
that there are still challenges for real-world applications using
deep learning models. From the experimental results, three
directions can be explored for improving OOD detection,
improving 3DSS model performance, designing thresholding
scores, and alleviating the intraclass diversity and interclass
ambiguity in training data. However, this study only considers
a small portion of the 3DSS methods and trust scoring methods
with manually chosen OOD classes. In the future, we would
like to consider more types of failure and OOD detection
methods and try to develop a practical failure and OOD
detector for real-world 3D semantic segmentation task.
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