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Abstract—Off-road semantic segmentation with fine-grained
labels is necessary for autonomous vehicles to understand driving
scenes, as the coarse-grained road detection can not satisfy off-
road vehicles with various mechanical properties. Fine-grained
semantic segmentation in off-road scenes usually has no unified
category definition due to ambiguous nature environments, and
the cost of pixel-wise labeling is extremely high. Furthermore,
semantic properties of off-road scenes can be very changeable
due to various precipitations, temperature, defoliation, etc. To
address these challenges, this research proposes an active and
contrastive learning-based method that does not rely on pixel-
wise labels, but only on patch-based weak annotations for model
learning. There is no need for predefined semantic categories, the
contrastive learning-based feature representation and adaptive
clustering will discover the category model from scene data. In
order to actively adapt to new scenes, a risk evaluation method
is proposed to discover and select hard frames with high-risk
predictions for supplemental labeling, so as to update the model
efficiently. Experiments conducted on our self-developed off-road
dataset and DeepScene dataset demonstrate that fine-grained
semantic segmentation can be learned with only dozens of weakly
labeled frames, and the model can efficiently adapt across scenes
by weak supervision, while achieving almost the same level of
performance as typical fully supervised baselines.

Index Terms—off-road, semantic segmentation, active learning,
contrastive learning

I. INTRODUCTION

SEMANTIC segmentation is one of the key perception
techniques for an autonomous driving agent to navigate

safely and smoothly in complex environments [1]. There has
been a large body of studies on semantic segmentation, while
most of them are addressed in structured urban scenes [2].
Such scenes are composed of many man-made objects such
as paved roads, lane markings, traffic signals, buildings, etc.
These objects belong to semantically interpretable categories
and their data have fairly clear boundaries. Despite the large
needs of fine-grained perception for autonomous driving at
off-road scenes [3]–[5], semantic segmentation in such scenes
has far less been studied. Off-road scenes are composed of
natural objects in various shapes and of indistinct semantic
category, diverse terrain surfaces, and changed topographical
conditions [6]. Semantic segmentation in such scenes remains
an open challenge.

According to the granularity of scene understanding, the
methods of off-road semantic segmentation can be divided into
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Fig. 1. The proposed active and contrastive learning framework for fine-
grained off-road semantic segmentation.

two groups: coarse-grained and fine-grained ones. Coarse-
grained methods formulate the problem as a binary [7][8]
or triple classification [9], or road detection by labeling each
pixel as road or non-road. They usually rely on prior rules,
such as vanishing points [10] or certain road models [11].
However, the mechanical properties of autonomous vehicles
are various, requiring a fine-grained understanding of terrain
properties that can lead to a measure for the difficulty of
terrain negotiation [12]. With the development of deep learning
techniques in recent years, many deep semantic segmentation
models are developed [13]. These models can be learned
end-to-end on large-scale datasets with pixel-wise annotation,
while both the size and diversity of the datasets are crucial
to the model’s performance [14]. Most of the open datasets
in this scope describe urban scenes, such as Cityscapes [15]
and SemanticKITTI [16]. The few off-road ones [17][18]
are of limited size and different definitions of semantic
categories. Fine-grained semantic segmentation in off-road
scenes faces the following challenges: 1) There has been no
unified category definition in nature scenes due to the diverse
objects and ambiguous semantic interpretability; 2) Pixel-wise
annotation of fine-grained labels is very hard because a large
part of the pixels could suffer from severe semantic ambiguity,
which makes manual annotation almost impractical; 3) Off-
road scenes can be very different, and even in the same
location, semantic properties can be changed greatly due to
precipitations, temperature, defoliation, etc.

Facing the challenges, this research proposes a framework
of fine-grained off-road semantic segmentation based on active
and contrastive learning as illustrated in Fig. 1 and detailed in
Fig. 2. It has the following features:

• No pixel-wise annotated datasets: a patch-based anno-
tation is devised to generate contrastive pairs of image
patches that have different semantic attributes for weak
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supervision, and subsequently a sliding-window-based
semantic segmentation is exploited;

• No predefined semantic categories: semantic categories
are discovered and modeled on scene data by using con-
trastive learning for feature representation and adaptive
clustering for category modeling;

• Adaptation to new scenes actively: a risk evaluation
method is developed to discover scenes where the model
results suffer from high-risk and the hard frames where
the model is the most uncertain, so as to update the model
actively and efficiently.

An off-road dataset is developed in this research containing
three subsets of different scenes with a total of 8000 im-
age frames. Extensive experiments are conducted to examine
the performance of both key modules and the system flow
of passive-active learning on both the self-developed and
DeepScene [17] datasets. Experimental results show that a
model of fine-grained off-road semantic segmentation can be
learned through weak supervision on dozens of annotated
image frames, when performance degradation is detected,
active learning can be automatically triggered to update the
model with additional annotations on no more than 40 selected
hard frames. DeepScene experiments show that the proposed
weakly supervised method achieves almost the same level of
performance as the typical fully-supervised ones.

This paper is organized as follows. Related works are
introduced in Section. II. Section. III describes the proposed
contrastive and active learning method. In Section. IV, the ex-
perimental design are illustrated. Section. V shows experimen-
tal results. Finally, we provide the conclusion in Section. VI.

II. RELATED WORKS

A. Off-Road Semantic Segmentation

Early researches were mainly coarse-grained, which are
usually formulated as a binary classification problem. These
methods depend on priors like vanishing point [10], vehi-
cle trajectories [6] or assume the road area as geometric
shapes [19][20], or utilize fixed road models [11][8].

Benefiting from advances in deep learning, stronger feature
representation results has led to fine-grained semantic segmen-
tation capabilities. Rothrock et al. [21] firstly implemented
FCN [22] for terrain classification of the Martian surface. After
that, more studies [23]–[26] focused on off-road scenes have
been developed. Some of them deal with the challenges from
various illumination and visual features in off-road scenes by
combining multi-modal information with RGB images, such
as stereo camera [27], NIR [17] and LiDAR [28][29]. Due
to the limitation of public datasets and the difficulty of off-
road labeling, several studies tried to reduce the demand for
fine-annotated data by transfer learning [30][31] from urban
or synthetic data. For autonomous platforms with multiple
sensors, weak supervision can be obtained from other modal-
ities, such as LiDAR [32][9], audio features [33] and force-
torque signals [12]. However, these automatically-generated
labels are usually limited to certain specific categories and
cannot meet fine-grained requirements. In addition, few studies

consider how to effectively adapt the model to the new off-
road environments while avoiding pixel-wise annotations and
network architecture changes.

B. Contrastive Learning
Contrastive learning has proven its promising ability to

learn discriminative feature representations through a self-
supervised pipeline by comparing positive and negative sam-
ples. This idea has been widely used in many fields such as
natural language processing [34] and typical visual tasks [35].
These methods usually treat each instance and its augmented
version as a positive pair, while other randomly selected
instances are regarded as negative samples. In this setting,
a large number of negative samples are required to ensure
the effectiveness of the learned feature representation. The
memory bank is usually used to store the features of the
training data [35]–[37].

Recent studies [38] proposed a supervised contrastive learn-
ing framework for the image classification task, which uses
class labels to generate positive and negative samples. This
idea has been extended to pixel-level semantic segmentation
tasks by [39][40]. However, pixel-wise annotations are ex-
tremely rare and expensive in off-road scenes. Different from
the setting of [39][40], this paper does not require pixel-level
labels but only use a few sparse image patch-based annotations
to distinguish similar or different regions of an image, and the
features learned by contrastive learning are further used to
generate fine-grained semantic segmentation results.

C. Active Learning
The core idea of active learning [41] is to let the trained

model actively select the hardest or most informative samples
to query manual annotations. According to [42], researches
can be categorized by different query strategies: uncertainty-
based approach [43]–[45], diversity-based approach [46]–[48],
and expected model change [49]–[51]. The uncertainty-based
methods select samples with the highest uncertainty, which can
be estimated by entropy [43][44] or softmax probability from
deep neural networks [45]. MC Dropout [46] and ensemble
methods [52] can be used to improve uncertainty estimation.
Diversity-based methods [46]–[48] tend to select samples in
accord with input distributions, but it may lead to increased
labeling costs. The methods of expected model change [49]–
[51] predict the influence of an unlabeled example on future
model decisions, and choose the examples leading to more
expected model change as an informative sample.

The active learning approaches for semantic segmentation
usually use regions or entire images as the sampling unit.
Region-level methods [53][54] rely on a pre-segmentation
to retrieve super-pixels, but due to insufficient or over-
segmentation, the segmentation algorithm may not be able
to separate appropriate semantic regions for labeling. Image-
level methods [55][56] use the entire image as the sampling
unit. [57] incorporates the semantic difficulty to measure the
informativeness and select samples at the image level. In this
work, we also select samples at the image level. However,
we do not require high-cost pixel-wise labels, but only query
patch-wise weak annotations.
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Fig. 2. The proposed active and contrastive learning framework for fine-grained semantic segmentation of off-road scenes.

III. METHODOLOGY

A. Outline

As illustrated in Fig. 3(a), many deep semantic segmentation
models Fθ take the entire image I as input and map to
semantic masks corresponding to each image pixels, which
usually requires pixel-wise supervision. This research exploits
a different flow as Fig. 3(b) to take patch-based annotations
as weak supervision. Given an image I , generate a sliding
window and find the semantic label y for each image patch
x through the classifier Fθ. In this research, Fθ consists of
a feature extractor fθ that discriminates a given contrastive
image patches in the feature space, and a maximum likelihood
classifier based on the category model Cm that is learned by
adaptive clustering of the training features.

The model Fθ is trained at scene Dtrain by a set of
patch-based annotations {Ak}. At a new scene Dnew, Fθ
could be exposed to data that is substantially different from
those in training, resulting in performance degradation. Such
situation is very dangerous for safety-critical applications like
autonomous driving. The agent needs to be aware of this
performance degradation and require the model to be updated
to accommodate the new scenes. To this end, a risk evaluation
method is developed to discover when the model is no longer
valid and the results are high-risk, and triggers the process
of active learning. In the active learning process, the hard
frames which are the most uncertain for the model are tend to
be selected for human annotation, and update the model Fθ
subsequently.

B. Model Learning

1) Problem Formulation: One training image frame Ik
includes several anchor patch annotations Ak = {Ak,i =<
pk,i, ak,i >}. An anchor patch Ak,i consists of an image patch

pk,i and a label ak,i. Different from common defined semantic
labels that map a label ID to a specific category among the
whole dataset, in this research, the labels of anchor patches are
comparable only if they belong to the same image. In other
words, this ak,i only identifies image patches with similar or
different semantic attributes in the current image. It provides
great convenience for off-road data labeling, because it is
difficult to determine a unified category list in advance for
diverse off-road scenes.

Denoting z = fθ(p) as an encoder that converts a high-
dimensional image patch p to a normalized D-dimensional
feature vector z ∈ ZD, then the exponential cosine similarity
sim(pi, pj) is used to evaluate the similarity of two image
patches via their features zi and zj :

sim(pi, pj) = exp(zTi · zj) (1)

The contrastive learning method is used to optimize
fθ, which making the similarity between anchor patches
sim(pk,i, pk,j) be higher for Ak,i and Ak,j sharing the same
label, i.e. ak,i = ak,j , and vice versa.

Through the optimized fθ and extracted feature vectors
Z = {z1, z2, ..., zN}, the category modeling aims to find the
most applicable class number m and corresponding model
parameters Cm = {c1, c2, ..., cm} by adaptive clustering.

2) Feature Representation by Contrastive Learning:
a) Contrastive Samples: The core idea behind con-

trastive learning is to learn a fθ that separates samples with
different semantic meanings. At each step in the training pro-
cess, contrastive learning requests a query sample q following
one corresponding positive sample q+ and n negative samples
{q−i |i = 1, .., n}. Here, one query sample is an anchor patch
Ak,i. Its corresponding positive and negative samples are all
from the same image.
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Fig. 3. Semantic segmentation pipeline in this paper.

Given a query sample with label ak,i in image frame Ik,
other anchor patches in Ik can be divided to two sets according
to the patch label ak,i: one is positive anchor set {A+

k,i} with
patches sharing the same label ak,i; the other is negative
anchor set {A−k,i} including the rest patches. Positive and
negative samples are selected from the aforesaid two sets
respectively. The detailed sampling strategy is described in
Section III-B2c.

b) Network Design and Loss Function: Use a convolu-
tional neural network backbone to model fθ, i.e. AlexNet [58],
convert the tensor of query, positive or negative samples into
a normalized feature vector z in low-dimensional embedding
space ZD. The parameter θ is optimized by contrastive learn-
ing, aiming to increase the exponential cosine similarity of zs
that share the same label, while decreasing those with different
labels.

A contrastive loss function InfoNCE [59] is implemented:

L = − log
exp(zT · z+/τ)

exp(zT · z+/τ) +
∑n
i=1 exp(zT · z−i /τ)

(2)

where τ denotes a temperature hyper-parameter, z+ and z−i
are feature vectors of positive and negative samples.

Unlike the typical contrastive learning setting [60], which
uses a memory bank to save features of training samples, in
this research, updated positive and negative sample features
are calculated at each training step. This is because positive
and negative samples are only comparable within the same
image frame, which makes it possible to compute features
with reasonable memory cost.

c) Sampling Strategy: To enrich data variety of a limited
number of anchor patches, assuming that neighbor regions in
the off-road environment are semantically similar, positive and
negative samples of a query sample q are randomly drawn
from the neighbor regions of q’s positive and negative anchors
at the frame. As illustrated in Fig. 4(a), the neighbor sample
are drawn with its center point locating inside the region of
the original sample q.

When composing a sample data, contextual information is
also included, which is crucial for classifying objects that lack
texture. As shown in Fig. 4(b), given an RGB image patch
q, treating it as the foreground qf containing 3 channels, a
background qb with a larger cropped area is centered at qf .

(a) neighborhood sampling
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Fig. 4. Illustration of (a) neighborhood sampling strategy, and (b) how to add
background information with the foreground image patch.

They are both reshaped to the same size and compose a 6-
channel tensor as the input to the feature extractor fθ. To
enhance the robustness of the model in different environ-
ments with different illumination conditions, we implement
data augmentation on the 6-channel tensor for each sample
before feeding it to fθ. Concretely, data augmentation contains
random greyscale, random flip and color jitter (randomly
changing the brightness, contrast, and saturation of an image).

3) Adaptive Category Modeling: Given a set of N D-
dimensional data points Z = {z1, z2, ...zN} that are fea-
ture vectors extracted by fθ on image patches P =
{p1, p2, ..., pN}, category modeling is to find the category
number m and model parameters of the clusters Cm =
{c1, c2, ..., cm} that has the maximum likelihood on Z.

We consider the case where data following the multivariate
Gaussian distribution, each cluster ck is modeled by a mean
vector µk and a covariance matrix Σk. The likelihood of data
point zi under cluster ck is

γ(zi; ck) =
1

(2π)D/2|Σk|1/2
exp{−1

2
(zi−µk)TΣ−1k (zi−µk)}

(3)
In the feature space ZD, the maximum likelihood function

of the mixed category distribution Cm on data points Z can
be given as follows [61],

L(Cm;Z) =

N∏
i=1

m∑
k=1

γ(zi; ck), (4)

.
For a certain cluster number m, the model parameters Cm

can be estimated by maximizing L(Cm;Z), where the EM
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algorithm [62] is among the most popular approaches for
parameter estimation.

To determine the number of clusters m, the Bayesian
information criterion (BIC) [63] is used. Perform EM for each
number of clusters m = 2, ...,M , where M is an empirical
value representing the maximal number of clusters. The BIC
value is estimated as follows

BIC(Cm;Z) = −2 logL(Cm;Z) + u log(N) (5)

where u is the number of model parameters. The m that
leads to the decisive first local minimum of BIC value is found
as the optimal number of clusters.

C. Semantic Segmentation and Active Learning

1) Semantic Segmentation: During semantic segmentation
inference, for a given image frame It, a sliding window is
conducted to generate image patches Pt = {p1, p2, ...pNt}.
For each image patch pi, a feature vector is first extracted by
zi = fθ(pi), then a category label yi is assigned by matching
zi with the category model Cm as below.

k∗ = arg max
k

(γ(zi; ck)) (6)

ri = 1− γ(zi; ck∗) (7)

yi =

{
k∗ if ri ≤ rσ;
φ otherwise

(8)

where k∗ is the cluster ID that has the maximal likelihood
with zi. ri is the risk of classifying zi to the most likely cluster
k∗. k∗ is assigned to category label yi if and only if the risk
ri is below a certain risk bound rσ . Otherwise, yi will be
assigned a special label φ indicating the unknown class.

It is generally believed that all pixels in one patch belong
to the same category. When acquiring image patches by a
sp × sp sliding window with step size ξ, if higher resolution
semantic segmentation is required, usually set ξ < sp, so
that the patches are partially overlapped. As a result, each
pixel may get multiple predictions from different patches. The
final label of each pixel is determined by the weighted voting
method. When calculating, the closer a pixel is to the center
of the patch, the higher the voting weight of the patch label.

After obtaining the semantic segmentation of the entire
image, the widely used Dense Conditional Random Field
(DenseCRF [64]) is used as an optional post-processing mod-
ule to refine the predictions. In scenes with clear region
boundaries, segmentation can be effectively refined.

2) Risk Bound Estimation: After learning the category
model Cm on the training set Dtrain including a total of
N train patches set Ptrain, a confidence level δ of the learned
model can be given by the operator’s experience. It means
that the proportion of risky classification is less than 1 − δ.
Therefore, the risk bound rσ can be estimated by solving the
following constrained optimization.{

min rσ
s.t. |{ri>rσ}|

Ntrain ≤ 1− δ (9)

𝒓𝝈

𝑟

𝑃𝑟(𝑟)

≤ 1 − 𝛿

Fig. 5. Illustration of risk bound estimation.

An analytical solution is shown in Fig. 5. Generate a
histogram Pr(r) over the set of {ri}, where each ri is
computed over pi ∈ Ptrain. Minimize rσ while satisfying
|{ri>rσ}|
Ntrain ≤ 1 − δ, equivalent to

∑rmax

r>rσ
Pr(r) ≤ 1 − δ.

The resulting risk bound rσ is used for the following risk
evaluation.

3) Risk Evaluation: During inference, given a set of image
patches Pt = {p1, p2, ..., pNt} belonging to image frame It,
along with the category model Cm with m clusters and a
risk bound rσ , a set of labels Yt = {y1, y2, ...yNt} will be
estimated, where yi ∈ {1, ...,m;φ}. For convenience, we
denote the classification of each data point by yi = y(pi|Cm).
Let P∗t ⊂ Pt be the subset containing patches classified as φ,

P∗t = P∗t (Pt;Cm) = {pi ∈ Pt ∧ y(pi|Cm) = φ} (10)

The proportion of P∗t represents the degree of uncertainty or
risk of the model in the scene described by the image frame
It. An index describing the model uncertainty at the image
frame level, i.e. frame-level risk, is subsequently defined:

Φft = Φft (Pt;Cm) =
|P∗t (Pt;Cm)|

Nt
, (11)

where |P∗t (Pt;Cm)| is the size of the set P∗t .
When deploying on the autonomous vehicle, the data to

be predicted is usually a sequence of Ts image frames
{I1, ..., ITs} including image patches S = {P1, ...,PTs}. Let
S∗ ⊂ S be the subset containing risky frames that the model
is uncertain, i.e. exceeding the risk level ε.

S∗ = S∗(S;Cm) = {Pt ∈ S ∧ Φft (Pt;C
m) > ε} (12)

The proportion of S∗ represents the degree of risk, in other
words, the uncertainty of the model on the dataset described
by the sequence of image frames S. An index describing
sequence-level risk is then defined.

Φs = Φs(S;Cm) =
|S∗(S;Cm)|

Ts
(13)

In this research, sequence-level risk is a measure of discov-
ering when a model is no longer valid and trigger the active
learning process, while frame-level risk is to find the hard
frames that the model is uncertain, which are requested for
human annotation.
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4) Workflow: The workflow of active learning for semantic
segmentation is described below.
S1. Offline learning

S1-1. Initialization (Model learning)
Given a training dataset including anchor patches
set Atrain, learn a model fθ by contrastive learning
(Section III-B2), then find category model Cm by
adaptive clustering (Section III-B3).

S1-2. Risk Bound Estimation
Given the learned category model Cm on the training
patches Ptrain from Atrain, estimate a risk bound
rσ (Eqn. 9).

S2. Online Semantic Segmentation
S2-1. Semantic Segmentation

Given a test image frame It, generate a set of image
patches Pt using a sliding window. For each image
patch pi, find the corresponding label yi (Eqn. 8) and
risk ri (Eqn. 7).

S2-2. Risk Evaluation
For consecutive Ts test image frames {I1, ..., ITs}
including image patches S = {Pt}, estimate {P∗t }
(Eqn. 10), {Φft } (Eqn. 11), S∗ (Eqn. 12) and Φs

(Eqn. 13). If the sequence-level risk Φs exceeds a
certain threshold, the active leaning module will be
triggered to update the current model.

S3. Active Learning
S3-1. Hard Frame Selection

Choose a batch of B image frames {Iu1 , ..., IuB}
with image patches Su = {Pu1

, ...,PuB} ⊂ S to
meet{

max
∑uB
t=u1

Φft
s.t. ∀Pui ,Puj ∈ Su, |ui − uj | > ∆

, (14)

where ∆ is a threshold to avoid selection on neighbor
frames that provide repetitive information.

S3-2. Human Annotation
For selected B frames, annotate contrastive image
patches and corresponding labels to obtain A =
{Au1

, ..., AuB}, where Au = {< pu,i, au,i >},
then update the supplemental annotations AAL ←
AAL +A.

S3-3. Model Update
Fine-tune fθ on the AAL, then estimate category
model Cm and risk bound rσ . Finally, continue
semantic segmentation process (go to S2-1).

IV. EXPERIMENTAL DESIGN

A. Notations

1) Experiment Stage: For clear interpretation, the following
notations are introduced:
• Learning: the initial training stage of semantic segmen-

tation models. Given a training set containing anchor
annotations, train the feature extractor fθ and the cor-
responding category model Cm by contrastive learning.

• Active Learning: Given a learned model, implement it
on a new dataset and use active learning to obtain
supplemental annotations, then update the model.

(a) our dataset

(b) DeepScene dataset

narrow semi-structured scene

earth mixed with grass

mixed road surfacenarrow path with fallen leaves 

wide gravel road wide earth road

Fig. 6. Typical scenes in (a) our off-road dataset and (b) DeepScene
dataset [17].

• Test: evaluate the performance of semantic segmentation
models.

2) Model: The notations of semantic segmentation models:
• MA: the model trained on dataset A;
• MB

A : based on the initial model MA, the model updated
by active learning on dataset B.

When emphasizing the semantic granularity of annotations,
the following notations are used:
• MALv1 : the model trained by annotations with Lv1 (Level

1) semantic granularity on dataset A. In experiment, the
granularity of anchor annotations include 3 levels, i.e.
Lv1, Lv2 and Lv3.

When indicating the frame number for training, the following
notations are used:
• MA50: the model trained by 50 image frames of dataset
A;

• MB20
A50 : based on the initial model MA50, the model

updated by active learning on 20 frames of dataset B.
When comparing different methods, M is usually replaced
by the method’s abbreviation, such as BaseA, RandB20

A50 and
OursB20

A50 .

B. Dataset

1) Our Dataset: We developed an off-road dataset for
experimental validation of the proposed method. As shown in
Fig. 6(a), the images are collected by a front-view monocular
RGB camera mounted on a moving vehicle. As shown in
Table I, our dataset includes 3 sub-datasets (noted as A/B/C)
for different experimental stages.

Subset A contains 5064 frames for experiments of the
Learning stage. We randomly sample 50 frames for patch-
based annotations and use them to train a contrastive learning-
based feature extractor and obtain adaptive category modeling,
evaluating its performance by randomly selecting patches on
other images.

Subset B includes 1639 frames for evaluating the active
learning pipeline. The risk evaluation module will check the
results of MA. When the active learning is activated, X frames
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TABLE I
DATASET STATISTICS

Dataset Ours DeepScene
Subset code A B C D E

Exp. stage Learning
Active

learning
Test

Active
learning

Test

Annotated
anchor frames

50 10∼30 - 20∼40 -

Total frames 5064 1639 1600 230 136
* The train and test set of DeepScene dataset are noted as D and E

respectively.

(b)  Experimental pipeline

(a)  Experimental design and dataset usage

Dataset Our dataset DeepScene dataset

Subset code A B C D E

St
ag

e

Learning 𝑀𝐴

Active 
learning

𝑀𝐴
B 𝑀𝐴

D

Test 𝑀𝐴 𝑀𝐴
B 𝑀𝐴 𝑀𝐴

D

Exp. Purpose
Dataset usage

Learning Active learning Test

Exp. 1
Contrastive learning for 
feature representation

A - -

Exp. 2 Adaptive category modeling A - -

Exp. 3 Active learning A B C

Exp. 4 Active learning across datasets A D E

Exp.1

Exp.2

Exp.3

Exp.4

Fig. 7. Experimental design and pipeline. (a) experimental pipeline. (b)
experimental design and dataset usage.

will be selected from hard frames for human annotation and
the model is updated to MB

A .
Subset C includes 1600 frames for evaluating the improve-

ments from active learning. Concretely, the effectiveness of
active learning can be examined by comparing the semantic
segmentation results and risk-based metrics between the initial
model MA and the updated model MB

A .
2) DeepScene Dataset: Besides our dataset, the proposed

method is also evaluated on the DeepScene dataset [17].
It contains several types of camera data, while this paper
only uses monocular RGB images. As shown in Fig. 6(b),
compared to our dataset,the DeepScene dataset has different
environments and illumination to examine the generalization
ability of the proposed method in different scenes.

The train and test set of DeepScene are noted as dataset D
and E, including 230 and 136 frames respectively. Each image
frame has pixel-wise semantic annotations. Similar to dataset
B/C, the dataset D/E are respectively used for training and
testing of the active learning models.

C. Experimental Design

Four experiments are designed as shown in Fig. 7, which
are introduced as follows:

1) Exp.1 Contrastive learning for Feature Representation:
It aims to evaluate the proposed contrastive learning method
for feature extraction. Train the model MA by annotations on
50 randomly selected frames from dataset A. The results are
shown in Section V-A.

2) Exp.2 Adaptive Category Modeling: It is designed to
examine the results of adaptive category modeling. In the
experiments, we use dataset A labeled by 3 granularity levels,
noted from coarse-grained to fine-grained as ALv1, ALv2 and
ALv3. The results are shown in Section V-B.

3) Exp.3 Active Learning: It aims to evaluate the proposed
active learning pipeline. The initial model MA trained on
dataset A is deployed on dataset B. After activating the active
learning module to select a few image frames for human
annotation, the model is updated from MA to MC

A and tested
on dataset C. The results are shown in Section V-C.

4) Exp.4 Active Learning across Datasets: It aims to
demonstrate the cross-dataset generalization ability of the
proposed active learning method. The initial model MA is
deployed on dataset D. After activating the active learning
module to select a few image frames for human annotation,
the model is updated from MA to MD

A and tested on dataset
E. The results are shown in Section V-D.

D. Evaluation Metrics

On our dataset, two risk-based metrics are used to evaluate
models’ performance.
• FLR (frame-level risk). Note the frame-level risk Φft

(Equation 11) as FLR, then mFLR indicates the mean
FLR of a data sequence, which describes the average
proportion of high risk patches per frame. The lower FLR
value means the better model performance.

• Sc (scene coverage), defined as Sc= 1 − Φst , where
sequence-level risk Φst is described by Equation 13. It
means the certainty of the model over the entire data
sequence, i.e. the proportion of non-risk frames. The
higher Sc value means the better performance.

On the DeepScene dataset, 5 common metrics for semantic
segmentation tasks are introduced:
• mIoU (mean Intersection over Union), PA (Pixel Ac-

curacy), PRE (Precision), REC (Recall), FPR (False
Positive Rate).

V. EXPERIMENTAL RESULTS

A. Exp. 1: Contrastive Learning for Feature Representation

In the initial training stage of the semantic segmentation
model, the feature extractor fθ trained by contrastive learning
is dedicated to narrowing down the semantically similar image
patches in the feature space, while pushing away different
image patches. Fig. 8 shows the patch similarity (Equation 1)
calculated by the feature extractor of model MA on non-
training image frames. Similarity values are marked above the
image patches.

As shown in Fig. 8(a), several image patches are randomly
selected in each image, one of which is regarded as an anchor
patch (marked as red A). Different colors visualize feature
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Fig. 8. Visualization of image patches’ feature similarity. Randomly choose one patch as an anchor patch (red A), other patches’ color indicate their similarity
to the anchor patch (Equation 1). (a) image patches’ feature similarity at different scenes. (b) case study on dataset A: the corresponding positions of the
image patches in the feature space. (c) negative cases on dataset B: feature similarity does not match semantic meanings.

0: earth road

1: vegetation

2: roadside

0: earth road

1: stone

2: vegetation

0: earth road

1: stone

2: vegetation

𝐿𝑣2

𝐿𝑣3

𝐿𝑣1

3: roadside

4: building

5: cement pile

6: wood

7: wood

8: fallen leaves

9: fissure

10: others

3: roadside

4: building

5: gravel

6: cement pile

Fig. 9. The reference label definitions of different semantic granularity.

similarities between the anchor patch and other patches. Colors
closer to red indicate higher similarity.

Fig. 8(b) selects two cases in dataset A for concrete analysis.
The feature vector of each image patch is reduced by t-
SNE[65], and then drawn on the right. The patch IDs in the
two images correspond to each other. The other points in the
feature map are from the training patches. For both cases in
Fig. 8(b), the feature similarity between each image patch
and anchor is consistent with their semantic relationship, and
image patches of the same category are relatively concentrated
in the feature map. Such distribution provides a prerequisite
for subsequent adaptive category modeling.

𝐿
𝑣
2

𝐿
𝑣
3

𝐿
𝑣
1

(b)
t-SNE visualization
(reference label)

(c)
t-SNE visualization
(clustering label)

(a)
Cluster number 
estimation (BIC)

2      4      6    8     10    12    14
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B
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2      4      6    8     10    12    14

vegetation

vegetation

vegetation

earth
road

earth
road

earth
road

wood
stone

fissure

Fig. 10. The cluster number estimated by BIC and adaptive category modeling
results under different granularity annotations. (a) cluster number estimation.
(b) category modeling results colorized by reference labels. (c) category
modeling results colorized by clustering labels.
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𝐿𝑣3

(a)
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fallen leaves on road

(3)

𝐿𝑣1 𝐿𝑣2 𝐿𝑣3

(e)

𝐿𝑣1 𝐿𝑣2

FLR

frame

simple road condition

Fig. 11. Analysis of adaptive category modeling results under different granularities. (a) input image; (b-d) predictions from the model under granularity
Lv1-Lv3; (e) The FLR curves of models trained by three granularities on dataset A.

Fig. 8(c) shows some negative cases of model MA in an
unknown scenario (dataset B). In Fig. 8(c1), the gravel road
(patch ID 3,4) in the red circle does not appear in the training
set, while the earth road samples (patch ID 1,2) have a high-
level similarity with them and distribute close in the feature
map. It indicates that the current features extracted by fθ
are difficult to distinguish between the two categories. In
Fig. 8(c2), the image patch 4 and 5 (muddy areas on the
roadside) of the same category are distributed farther in the
feature map, which also reflects the weakness of fθ. In the
new scenes, the generalization ability of the features extractor
is insufficient, and active learning needs to be introduced to
update the model.

B. Exp. 2: Adaptive Category Modeling

The mechanical properties of unmanned platforms are dif-
ferent, which requests different granularities for semantic seg-
mentation, i.e. the types of terrain that need to be distinguished
are also different. According to the mechanical properties of
the platform, we define three reference label sets with different
granularities, as shown in Fig. 9. It needs to be emphasized that
it is very difficult to annotate pixel-wise labels based on these
label sets due to the ambiguity between classes. However, they
can provide guidance for labeling patch-based positive and
negative samples.

Fig. 10(a) shows the result of using Bayesian Information
Criterion (BIC) to determine the number of clusters in adaptive
category modeling. Under the three granularity annotations
Lv1, Lv2 and Lv3, the training samples are adaptively clus-
tered into 4, 6, and 9 categories, respectively. Figure 10 (b-c)
is the visualization result of the image patch features in the

training data after dimensional reduction by t-SNE[65], which
is colored according to the reference label and clustering label.

From the clustering distribution of Fig. 10(b-c), under all
three semantic granularities, earth road, vegetation and other
dominated categories adaptive clustering results are basically
consistent with the reference label. Small-sized clusters are
usually from categories with low frequency, such as gravel,
fallen leaves, etc.

There exist differences between these clustering results
and the reference labels, which are mainly divided into two
situations: one is the category with complex and diverse
appearance. For example, the fissure samples in Fig. 10(b)-Lv3
has multiple scattered clusters, indicating high variance within
the category. The second situation is the category with similar
features to other clusters. For example, in Fig. 10(b)-Lv2, the
distribution of wood samples is relatively concentrated, but
very close to stone samples. In category modeling, they can
easily be misclassified into the same category.

Concrete cases are shown in Fig. 11. The stones in case
(1) have been effectively modeled at granularity Lv2 and
Lv3, but failed to be segmented at coarse-grained Lv1. In
case (2), such simple road condition only includes basic
categories like earth roads and vegetation. The corresponding
semantic segmentation results under different granularity are
basically the same. From the FLR curve in Fig. 11(e), it
can also be seen that the risk values of different models in
case (2) are close and low, indicating that a basic category
modeling is enough to handle such simple scenes. In case (3),
the roads covered by fallen leaves are marked as yellow in
the semantic segmentation results. Only the fine-grained Lv3
model can distinguish this category. From the corresponding
FLR curves in Fig. 11(e), it can be seen that the curve of Lv3
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Fig. 12. Exp. 3: Comparison of model’s semantic segmentation results before
and after active learning.

is significantly reduced. The fine-grained category modeling
effectively reduces prediction risk.

C. Exp. 3: Results of Active Learning

Fig. 12 shows the semantic segmentation results at different
stages in the active learning process. First, deploy the model
MA originally trained on dataset A on dataset B, trigger the
active learning module to select a small number of frames in
difficult scenes, and after manual supplementary annotation,
the model is updated to MB

A , then compare its performance
to MA. Finally, the semantic segmentation performance of the
model MA and MB

A are compared on dataset C. Fig. 12(1-3)
and (4-6) show the semantic segmentation results and FLR
curves of the two models on dataset B and C respectively.

TABLE II
PERFORMANCE OF ACTIVE LEARNING METHODS

mFLR ↓ Sc

model Dataset B Dataset C Dataset B Dataset C

co
m

pa
ri

so
n

of
fr

am
e

se
le

ct
io

n
st

ra
te

gy

MA 54.25% 59.04% 35.50% 8.75%

RandB20
A 46.52% 49.50% 78.00% 66.25%

UnifB20
A 44.43% 44.68% 83.63% 73.00%

OursB20
A 44.34% 40.67% 85.00% 83.88%

co
m

pa
ri

so
n

of
la

be
le

d
fr

am
e

nu
m

be
rs

OursB10
A 51.57% 50.70% 44.88% 61.50%

OursB15
A 45.58% 40.58% 77.88% 81.50%

OursB20
A 44.34% 40.67% 85.00% 83.88%

OursB25
A 43.03% 38.12% 88.13% 84.75%

OursB30
A 39.22% 35.36% 91.00% 86.38%

1 All models’ subscript A50 is abbreviated to A;
2 RandB20

A : random select frames for active learning; UnifB20
A : uni-

formly select frames for active learning;
↓ : lower value means better performance.

TABLE III
PERFORMANCE ON DEEPSCENE DATASET

type class model PA IoU PRE REC FPR↓

w
ea

kl
y

su
p.

5

MA 75.28 16.95 32.65 43.43 15.35

OursD20
A 91.30 49.60 63.84 70.40 5.92

OursD40
A 92.66 53.96 66.76 71.56 5.02

OursD40
A +CRF 95.16 61.26 78.72 76.30 3.67

4

OursD20
A 89.81 61.51 78.85 78.56 6.76

OursD40
A 91.89 68.81 82.69 84.42 5.73

OursD40
A +CRF 94.01 75.88 88.12 89.52 4.57

fu
lly

su
p.

5

SegNet [66] 88.47 74.81 84.63 86.39 13.53

FCN [22] 90.95 77.46 87.38 85.97 10.32

ParseNet [67] 93.43 83.65 90.07 91.57 8.94
1 IoU: Intersection over Union, PA: Pixel Accuracy, PRE: Precision, REC:

Recall, FPR: False Positive Rate.

In Fig. 12(1-3), it can be found that the predictions of MA

on dataset B contains many noises. For example, the lime
soil inside the cyan circle in Fig. 12(2) and the stones inside
the red circle in Fig. 12(3) are predicted to be a mixture of
multiple categories, and the corresponding positions in risk
maps also present a high prediction risk (red). In Fig. 12(3),
the earth embankment inside the yellow circle is a new type
for model MA, and its segmentation results are noisy and the
risk value is also high. After active learning, the model MB

A

gives better semantic segmentation results in aforesaid scenes,
and the high-risk areas in the risk map are also significantly
reduced. Among the dataset, the reduction of frame-level risk
is reflected by the FLR curve. After active learning, the orange
curve of MB

A is significantly lower than the blue curve of MA.
On dataset C, we also test and compare the performance of

model MA and MB
A . The muddy triangle area in Fig. 12(4),

the gravel road in Fig. 12(5), etc., all show the better semantic
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Fig. 13. Semantic segmentation results on the DeepScene dataset. (a) the radar chart visualization of methods’ performance shown in Table III. (b) qualitative
semantic segmentation results of the proposed method.

segmentation performance of MB
A , which is also reflected in

the lower FLR curve on dataset C.
Table II quantitatively compares the performance of differ-

ent models. The upper part of the table compares different
frame selection strategies. Each model selects 20 frames on
dataset B for active learning. RandB20

A randomly selects
frames for annotation, UnifB20

A uses uniform sampling, and
OursB20

A uses the hard frame selection strategy proposed
in Section III-C4. Under the metrics mFLR and Sc, the
proposed method shows significant advantages. The bottom
half of Table II evaluates the effect of the active sampled frame
number B. In general, more supplemented annotations lead to
better model performance.

D. Exp. 4: Results of Active Learning across Datasets

Table III is the performance comparison of different models
on DeepScene dataset. Based on the pixel-wise labels of
DeepScene, several classical semantic segmentation metrics
are evaluated for comparison. According to the category
number, models are divided into two groups: (1) models with 5
categories, consistent with the label definitions of DeepScene
dataset; (2) models with 4 categories based on the adaptive
category modeling, the ignored label corresponds to obstacle
in DeepScene. Obstacle samples are very rare in the training
set of DeepScene, accounting for only 0.33%. The active
learning module only selects a few image frames, which makes
it difficult for obstacles to get annotations. Therefore, it is
not considered as a valid independent label during adaptive
category modeling.

In the table, the 5-class model OursD20
A uses only 20 frames

of patch-based weak annotations in the new environment,
while achieving 16.02% PA and 32.65% IoU improvement
over the initial model MA. The model OursD40

A further
improves the metrics. Since the road boundaries in the Deep-
Scene dataset are relatively clear, the post-processing module
DenseCRF[64] can refine the semantic segmentation results.
The corresponding model OursD40

A +CRF achieves the overall

best performance. Under both label definitions, the proposed
active learning method brings significant performance gains.

Comparing models with different category numbers: when
the numbers of frames for supplementary annotation are the
same, the 4-class model obtained by adaptive category mod-
eling outperforms the 5-class model in all indicators. Among
them, the optimal models under both category definitions have
better FPR and PA than some classic fully supervised methods.
The 4-class model OursD40

A +CRF achieves the same level as
the fully supervised methods in all evaluation metrics.

Fig. 13(a) uses a radar chart to visualize model performance
in Table III. Some concrete examples are shown in Fig. 13(b).
In various scenes under different lighting conditions, the model
OursD40

A +CRF (5 categories) requires only 40 frames of low-
cost patch-based annotations, while achieving good semantic
segmentation results.

VI. CONCLUSION

In this paper, we propose a framework of fine-grained off-
road semantic segmentation based on active and contrastive
learning. Through patch-based weak annotations, a contrastive
learning-based feature extractor is learned to discriminate
different semantic attributes. After that, an adaptive category
modeling method is proposed, then a sliding-window-based
semantic segmentation is exploited. To help the model adapt
to new scenes efficiently, a risk evaluation method is devel-
oped to discover and select hard frames for active learning
of new scenes. To evaluate the proposed method, extensive
experiments are conducted on the self-developed off-road
dataset with a total of 8000 image frames and the public
DeepScene dataset. With only dozens of image frames as weak
supervision, the fine-grained off-road semantic segmentation
model can be learned. When detecting performance degrada-
tion in new scenes, the proposed active learning method can
effectively select hard frames for the current model by risk
evaluation and improve results with no more than 40 frames
of patch-based annotations. Experiments on the DeepScene
dataset show that the proposed weakly supervised method
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can achieve the same level of performance as typical fully
supervised ones. Future work will be addressed on preventing
models from catastrophic forgetting after adapting to new
scenes. Research about continual learning and incremental
learning will be explored in the future.
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